
 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 1]

Category: Informational Y. Pavlenko
 D. Isaenko
 A. Andreev
 Rig Expert Ukraine ltd.

Transceiver IP Link Protocol rev.1

Abstract

This document specifies an application-level Transc eiver IP Link
Protocol (TILP) to be used to monitor and control d evices
compatible with CAT & RS-485 protocols remotely.

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 2]

Table of contents

Goals.. 3

Transceiver audio interface 3
CAT interface 3
FSK output 3
PTT and CW output functions 3
RS-485 3
WinKey emulation 3

Terminology.. 4
TILP protocol details 4

General structure of the data packet 4
Packet types overview 5
Authorization packet 6
Checksum calculation algorithm 7
Session keep alive 8
PTT packet 9
Audio packet 11
TTY packet 15
CONNERR packet structure 19
Access levels packet 20
Firmware version packet 22

Packet aggregation................................. 23
Packet segmentation 23
Alignment 23
PTT/CW stream 23

Appendix A An example of the short session......... 24
Appendix B The short session with the aggregated pa ckets 25
Appendix C The session with the audio streams examp le......... 26
Appendix D The session with the audio and CW/PTT st reams...... 27
Appendix E The session keepalive example........... 28
Appendix F The serial ports data transfer example.. 29

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 3]

Goals

Most popular ham radio applications for working wit h
transceivers require multiple serial ports. When it comes to
control the transceiver remotely it is necessary to use special
devices for bind serial ports via the Internet or v ia a local
area network. Or to use TILP-compatible devices to communicate
with remote transceiver(s) via IP-based network.

Transceiver audio interface

TILP protocol provides audio stream encapsulation a nd delivery
from the transceiver to control software and back.

CAT interface

CAT (Computer Aided Tuning) provides control of rec eiving and
transmitting frequency, VFO, diversity reception, a udio levels,
memory and other operations by the computer softwar e. Normally,
modern transceivers have serial (with various signa l levels)
link providing CAT interface.

FSK output

FSK (Frequency Shift Keying) is a popular method of transmitting
digital messages over radio primarily used in radio teletype
(RTTY) mode. Most transceivers provide FSK modulato r feature to
make the RTTY signal stable and clear.

PTT and CW output functions

Transceivers provide PTT (Push To Talk) and CW (Con tinuous Wave)
keyer inputs to allow setting the transmitter on or off and
operating CW using external device (PTT pedal, CW b ug or paddle,
terminal node controller, or personal computer).

RS-485

Some types of equipment, such as antenna switches a nd relays can
be controlled via a RS-485 port. Multiple devices m ay be
connected in parallel and controlled by the compute r software.

WinKey emulation

To operate CW the ham operator may use software whi ch either
directly manipulates the DTR line, or uses the WinK ey protocol.

All the features mentioned above are supported by t he TILP
protocol.

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 4]

Terminology

TILP device - any device that supports TILP protoco l.

TILP protocol details

General structure of the data packet

RigExpert Wireless Transceiver Interfaces uses a pr oprietary
protocol for exchanging data between the device and the
computer.

This protocol has the following key features:
� data flow from PC software to TILP device and back is
organized into packets
� packets are Checksum Protected
� The Payload is a variable length field

Packet structure:

Packet contents:
Offset Length

(bytes)
Name Description

0 1 type Packet type.
Field value depends on
the packet type

1 4 params Parameters
(depend on
the packet type)

5 2 len Payload length (in bytes)
7 1 crc Checksum value. The checksum is

calculated over the packet
excluding the CRC field

8 up to
0xFFFF

data Packet payload

NOTE: packet header consists of “type”, “params” and “l en”
fields (first 7 bytes)

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 5]

NOTE: The checksum is calculated over the packet excludin g the
CRC field. I.e. checksum algorithm takes into accou nt only
header and data fields (“type”, “params”, “len” and “data”).

Packet types overview

Mnemonic
Hex

value
Description

AUTHORIZ_TYPE 0x00 Authorization packet
PTT_TYPE 0x01 PTT state packet

AUDIO_TYPE 0x02
Audio parameters packet
(sends by both PC and TILP device)

TTY1_TYPE 0x03 Parameters and data for CAT serial p ort
TTY2_TYPE 0x04 Parameters and data for RS-485 port
TTY3_TYPE 0x05 Parameters and data for FSK port

CONERR_TYPE 0x08
Connection error type
(sends by TILP device)

PERMISS_TYPE 0x09
Access right parameters
(sends by TILP device)

FWVER_TYPE 0x0A Firmware revision

/**
 * @brief Packet types
*/
typedef enum TILProtocolPacketTypes {
AUTHORIZ_TYPE = 0x00 , // Authorization packet
PTT_TYPE, // PTT state packet
AUDIO_TYPE, // Audio parameters packet
TTY1_TYPE, // Parameters and data for CAT serial port
TTY2_TYPE, // Parameters and data for RS-485 port
TTY3_TYPE, // Parameters and data for FSK port
RESERVED_6,
RESERVED_7,
CONERR_TYPE, // Connection error type
PERMISS_TYPE, // Access rights parameters
FWVER_TYPE, // Firmware revision
};

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 6]

Authorization packet

Payload contents:
Offset Length

(bytes)
Name Value Description

0 1 type 0x00 Packet type

1 4 params 0x00 For Authorization
packet this field value
must be zeroed

5 2 len 0x00
..
0x20

Passphrase length
(in bytes).
Passphrase length must
not exceed 32 bytes

7 1 crc CRC of the packet
(except CRC field)

8 up to 32 data Passphrase

If the password doesn’t match the TILP device’s one , the TCP
connection will be terminated by the TILP device.

/**
 * @brief send_autorization
 * @param sd - socket descriptor
 * @param pass - pointer to password string
 * @return
 */
int send_autorization(int sd, const char *pass)
{
 const uint32_t slen = strlen(pass);
 char buff[sizeof (packet_t) + slen];
 int retval;
 struct packet_t *pack;

 pack = (struct packet_t *)buff;
 pack-> type = AUTHORIZ_TYPE;
 pack-> params = 0;
 pack-> len = slen;
 pack-> crc = 0;

 memcpy(&buff[sizeof (packet_t)], pass, slen);
 pack-> crc = crc8(buff, sizeof (packet_t) + pack-> len);

 retval = write(sd, buff, sizeof (buff));

 return retval;
}

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 7]

Checksum calculation algorithm

The checksum is calculated over the packet excludin g the CRC
field. I.e. checksum algorithm takes into account o nly header
and data fields (“type”, “params”, “len” and “data”).

struct packet_t {
 uint8_t type ;
 uint32_t params ;
 uint16_t len ;
 uint8_t crc ;
};

char buff[30];
struct packet_t *pack;
pack = (struct packet_t*)buff;
pack->len = sizeof (buff);
pack->crc = 0;
// Init other fields of struct packet_t
pack->crc = crc8(&pack, sizeof (packet_t) + pack-> len);

For the CRC8 calculations use this function:

/*
 Name : CRC-8
 Poly : 0x31 x^8 + x^5 + x^4 + 1
 Init : 0xFF
 Revert: false
 XorOut: 0x00
 Check : 0xF7 ("123456789")
*/
unsigned char crc8(unsigned char *pcBlock, unsigned int len)
{
 unsigned char crc = 0xFF;
 unsigned int i;

 while (len--)
 {
 crc ^= *pcBlock++;

 for (i = 0; i < 8; i++)
 crc = crc & 0x80 ? (crc << 1) ^ 0x31 : crc << 1;
 }

 return crc;
}

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 8]

Session keep alive

Within 8 (eight) seconds, the application and the i nterface
should exchange with at least one packet. Usually t his is the
PTT status packet (the interface transmits this pac ket
asynchronously).
If within 8 (eight) seconds the interface does not take a single
packet, the TCP/IP connection will be terminated an d the
interface will go into a safe state (switched off P TT, CW and
FSK).
If within 8 (eight) seconds the user application ha s not
received a single packet from the interface, it mus t break the
connection.

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 9]

PTT packet

Payload contents
Offset Length

(bytes)
Name Value Description

0 1 type 0x01 Packet type

1 4 params 0 For PTT packet this
field value must be
zeroed

5 2 len 0x01 For the PTT packet the
payload always consist
of one byte

7 1 crc CRC of the packet
(header and data)

8 1 data 0 or 1 0 = PTT OFF
1 = PTT ON

PTT packet is sent both ways – to and from the inte rface. When
the packet is sent from the application to the inte rface, the
interface sets PTT as specified in the data field. Packets which
send from the interface to the application have cur rent status
of PTT. Application can update PTT status from thos e packets if
it needs.

Packet sending:
/**
 * @param sd - Socket descriptor
 * @param state - ptt state
 * @return - > 0 if Ok, <=0 if error
 */
int send_ptt(int sd, bool state)
{
 int retval;
 char buff[sizeof (packet_t) + 1];
 struct packet_t *pack;

 pack = (struct packet_t *)buff;
 pack-> type = PTT_TYPE;
 pack-> params = 0;
 pack-> len = 1;
 pack-> crc = 0;

 if (state) {
 buff[sizeof (packet_t] = 1;
 } else {
 buff[sizeof (packet_t] = 0;
 }
 /*Calculate CRC8*/
 pack-> crc = crc8(&pack, sizeof (packet_t) + pack-> len);
 /*Send data via TCP socket*/

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 10]

 retval = write(sd, buff, sizeof (buff));
 return retval;
 }

Packet receiving:
int get_ptt(int sd)
{
 int retval;
 char buff[sizeof (packet_t) + 1];
 struct packet_t *pack;
 uint8_t crc;

 retval = read(sd, buff, sizeof (buff));

 if (retval <= 0 || retval != sizeof (buff)) {
 return - 1;
 }

 pack = (struct packet_t *)buff;

 if (pack-> type != PTT_TYPE || pack-> len != 1) {
 return - 1;
 }

 crc = pack-> crc ;
 pack-> crc = 0;

 pack-> crc = crc8(&pack, sizeof (packet_t) + pack-> len);

 if (crc != pack-> crc) {
 return - 1;
 }

 return (int)buff[sizeof (packet_t)];
}

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 11]

Audio packet

Payload contents
Offset Length

(bytes)
Name Value Description

0 1 type 0x02 Packet type

1 4 params Sampling rate & codec
used

5 2 len 0x00 Initial packet contains
no payload

7 1 crc CRC of the packet
(header and data)

[Params] field structure for Audio packet
Offset Length

(bytes)
Name Value Description

0 2 samplerate The sampling rate (Hz)
2 2 codec Codec types:

0 = PCM
1 = µ-law
2 = A-law

The application must send this packet to properly i nitialize the
audio codec after a connection has been established .

typedef union {
 uint32_t data ;
 struct {
 uint16_t samplerate ;
 uint16_t codec ;
 };
} audio_head_t ;

/**
 * @brief send_audio_init
 * @param sd - socket descriptor
 * @param srate - Samplerate (8000, 12000, 16000)
 * @param codec - 0–PCM, 1–uLAW, 2-aLAW
 * @return
 */
bool send_audio_init(int sd, uint16_t srate, uint16_t codec)
{
 int retval;
 char buff[sizeof (packet_t)];
 struct packet_t *pack;
 audio_head_t ahead;

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 12]

 ahead. samplerate = srate;
 ahead. codec = codec;

 pack = (struct packet_t *)buff;
 pack-> type = AUDIO_TYPE;
 pack-> params = ahead. data ;
 pack-> len = 0;
 pack-> crc = 0;

 /*Calculate CRC8*/
 pack-> crc = crc8(&pack, sizeof (packet_t));
 /*Send data via TCP socket*/
 retval = write(sd, buff, sizeof (buff));

 if (retval < sizeof (buff)) {
 return false ;
 }

 return true ;
}

The interface in turn sends the packet that contain s the input
and output levels of the codec’s amplifiers:
Payload contents
Offset Length

(bytes)
Name Value Description

0 1 type 0x02 Packet type

1 4 params Sampling rate & codec
used

5 2 len 0x03
7 1 crc CRC of the packet

(header and data)
8 1 outlvl 0..118 Out level. Interface’s

audio output level.
Range from 0 to 118
(0 = 0dB, 118 = 78.3dB)

9 1 inLlvl 0..110 In level.
Left channel amplifier
level.
Range from 0 to 110.
(0 = 0dB, 110 = 55dB).

10 1 inRlvl 0..110 In level.
Right channel amplifier
level.
Range from 0 to 110.
(0 = 0dB, 110 = 55dB)

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 13]

/**
 * @brief receive_audio_params
 * @param [in] sd - socket descriptor
 * @param [out] outlvl - current output level in the TILP device
 * @param inLlvl [out] - current input level in the TILP device
(left channel)
 * @param inRlvl [out] - current input level in the TILP device
(right channel)
 * @return true of false
 */
bool receive_audio_params(int sd, uint8_t* outlvl, uint8_t*
inLlvl, uint8_t* inRlvl)
{
 int retval;
 char buff[sizeof (packet_t)+ 3];
 struct packet_t *pack;
 audio_head_t ahead;

 retval = read(sd, buff, sizeof (buff));

 if (retval <= 0 || retval != sizeof (buff)) {
 return false ;
 }

 pack = (struct packet_t *)buff;

 if (pack-> type != AUDIO_TYPE || pack-> len != 3) {
 return false ;
 }

 crc = pack-> crc ;
 pack-> crc = 0;

 pack-> crc = crc8(&pack, sizeof (packet_t) + pack-> len);

 if (crc != pack-> crc) {
 return false ;
 }

 *outlvl = buff[sizeof (packet_t)];
 *inLlvl = buff[sizeof (packet_t)+ 1];
 *inRlvl = buff[sizeof (packet_t)+ 2];

 return true ;
}

To set levels the application must send this packet . If the
levels are not changed again for 5 seconds, current values will
be stored in the non-volatile RAM.

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 14]

Setting audio levels example:
/**
 * @brief send_audio_params
 * @param sd - socket descriptor
 * @param srate - Samplerate (8000, 12000, 16000)
 * @param codec - 0–PCM, 1–uLAW, 2-aLAW
 * @param outlvl - output level for the TILP device
 * @param inLlvl - input level for the TILP device (left
channel)
 * @param inRlvl - input level for the TILP device (right
channel)
 * @return true of false
 */
bool send_audio_params(int sd, uint16_t srate, uint16_t codec,
 uint8_t outlvl, uint8_t inLlvl, uint8_t
inRlvl)
{
 int retval;
 char buff[sizeof (packet_t)+ 3];
 struct packet_t *pack;
 audio_head_t ahead;

 ahead. samplerate = srate;
 ahead. codec = codec;

 pack = (struct packet_t *)buff;
 pack-> type = AUDIO_TYPE;
 pack-> params = ahead. data ;
 pack-> len = 3;
 pack-> crc = 0;

 buff[sizeof (packet_t)] = outlvl;
 buff[sizeof (packet_t)+ 1] = inLlvl;
 buff[sizeof (packet_t)+ 2] = inRlvl;

 /*Calculate CRC8*/
 pack-> crc = crc8(&pack, sizeof (packet_t)+pack-> len);
 /*Send data via TCP socket*/
 retval = write(sd, buff, sizeof (buff));

 if (retval < sizeof (buff)) {
 return false ;
 }
 return true ;
}

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 15]

TTY packet

Payload contents
Offset Length

(bytes)
Name Value Description

0 1 type 0x03
..
0x05

Packet type
0x03 = CAT data
0x04 = RS485 data
0x05 = FSK data

1 4 params Serial port settings
bitfield

5 2 len Payload length (in
bytes)

7 1 crc CRC of the packet
8 Variable data Payload

Type – packet type. Values:
3 for serial CAT
4 for serial RS485
5 for serial FSK

Port settings bitfield:

[Params] field structure for TTY packet

Length
(bits)

Name Description

1 isopen 0 = closed
1 = open
If any application opens this serial
port, this bit must be set to 1. If port
is closed – set to 0

4 databits data width in bits
3 parity 0 = No parity

1 = Odd
2 = Even
3 = Mark
4 = Space

2 stopbits 0 = 1 stop-bit
1 = 1.5 stop-bits
2 = 2 stop-bits

22 baudrate baud rate

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 16]

The serial port buffer size in the TILP device is 2 56 bytes.
The interface replies with the TTY packet setting t he field
“Param” to the buffer’s free space. Also this packe t may contain
data, received by the interface from the transceive r. This
packet may be sent by the interface asynchronously.

typedef union {
 uint32_t data ;
 struct {
 uint32_t isopen : 1;
 uint32_t databits : 4;
 uint32_t parity : 3;
 uint32_t stopbits : 2;
 uint32_t baudrate : 22;
 };
} tty_head_t ;

static const uint32_t bufsize = 256 ;
static uint32_t buff_fill = 0;

/**
 * @brief send_serial
 * @param sd - socket descriptor
 * @param spd - serial port descriptor
 * @param pd - pinter to data
 * @param len - data len
 * @return - how many bytes was sent
 */
int send_serial(int sd, int spd, const void * pd, uint32_t len)
{
 char *buff;
 uint32_t wlen;
 struct packet_t *pack;
 tty_head_t serhdr;

 if (bufsize == buff_fill) {
 return 0;
 }

 wlen = len <= (bufsize - buff_fill) ? len : (bufsize -
buff_fill);

 buff = malloc(sizeof (struct packet_t) + wlen);

 if (buff == NULL) {
 return - 1;
 }

 pack = (struct packet_t *) buff;

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 17]

 // Fill serial port paremeters
 serhdr. isopen = serialport_state(spd);
 serhdr. databits = serialport_databits(spd);
 serhdr. parity = serialport_parity(spd);
 serhdr. stopbits = serialport_stop(spd);
 serhdr. baudrate = serialport_baud(spd);

 pack-> params = serhdr. data ;
 pack-> type = TTY1_TYPE;
 pack-> len = wlen;
 pack-> crc = 0;

 memcpy(&buff[sizeof (struct packet_t)], pd, wlen);

 pack-> crc = crc8(bufsize, sizeof (packet_t)+pack-> len);

 retval = write(sd, buff, sizeof (packet_t)+pack-> len);

 if (retval != sizeof (packet_t)+pack-> len) {
 wlen = 0;
 }

 free(buff);

 buff_fill += wlen;

 return wlen;
}

/**
 * @brief receive_serial
 * @param sd - socket descriptor
 * @param pd - pointer to buffer
 * @param len - buffer size
 * @return - how many bytes was sent
 */
int receive_serial(int sd, void * pd, uint32_t len)
{
 char buff[sizeof (packet_t)+bufsize];
 uint32_t rlen;
 struct packet_t *pack;
 uint8_t crc;
 uint32_t wlen;

 retval = read(sd, buff, sizeof (buff));

 if (retval < sizeof (packet_t)) {
 return 0;
 }

 pack = (struct packet_t *)buff;

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 18]

 if (pack-> type != TTY1_TYPE || pack-> len > bufsize) {
 return 0;
 }

 crc = pack-> crc ;
 pack-> crc = 0;

 pack-> crc = crc8(buff, sizeof (packet_t)+pack-> len);

 if (pack-> crc != crc) {
 return 0;
 }

 if (len < pack-> len) {
 pack-> len = len;
 }

 memcpy(pd, &buff[sizeof (packet_t)], pack-> len);

 buff_fill = pack-> params ;

 return pack-> len ;
}

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 19]

CONNERR packet structure

When connection error occurs, the interface sends t he CONNERR
packet with the error code.

Payload contents
Offset Length

(bytes)
Name Value Description

0 1 type 0x08 Packet type

1 4 params Error code
5 2 len 0x00 contains no payload
7 1 crc CRC of the packet

The interface may send next error codes:
Error code Description
0x00 No errors (NoError)
0x01 Multiple connections (MultipleConnection). The error

occurs when more than one application attempt to
connect to the interface

0x02 Wrong password (WrongPassword). The error occu rs
when the password in the authentication packet does
not match stored in TILP device password

0x03 Session timeout (Timeout). The error occurs wh en the
application did not communicate with interface for
more than 8 seconds

0x04 Unknown packet type (UnkonownPacket). Data in the
packet has unknown format

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 20]

Access levels packet
Access levels packets are transmitted by the interf ace only. The
interface supports multiple access profiles. Data e xchange
according to the access level is performed by the a pplication.

Payload contents
Offset Length

(bytes)
Name Value Description

0 1 type 0x09 Packet type
1 4 params 0x00 For Access Level packet

this field value must
be zeroed

5 2 len 0x09 Payload length (in
bytes)

7 1 crc CRC of the packet
8 1 flags Permissions bit field
9 4 worktime Active session time

limit in minutes. After
the expiration of the
time limit, the
application must close
the connection

13 4 pausetime Connecting pause time
in minutes. After
closing the connection
the application must
wait a specified time
before the new
connection.
When all fields are set
to 1 (full access), the
time limit fields must
be ignored

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 21]

Flags bitfield described as follows:
[Flags] bitfield structure

Length
(bits)

Name Description

1 enable Field is set to 1 when the profile is
active. In case this field set to 0, the
application must terminate the
connection

1 cat Field is set to 1 when the application
is allowed CAT data trans fer (CAT serial
port). If this field set to 0, any data
received through the CAT interface must
be ignored

1 ptt Field is set to 1 when the application
is allowed to turn on the transmitter by
PTT. If this field set to 0, the
application must ignore PTT commands
from user

1 audio field is set to 1 when the application
is allowed change audio levels. If this
field set to 0, the application must
ignore the audio levels change commands
from user

union flags_t {
 quint8 data ;
 struct {
 quint8 enable : 1;
 quint8 cat : 1;
 quint8 ptt : 1;
 quint8 audio : 1;
 quint8 unused : 4;
 };
};

Worktime field is a uint32_t variable, contains the active
session time limit in minutes. After the expiration of the time
limit, the application must close the connection.

Pausetime is a uint32_t variable, contains the conn ecting pause
time in minutes. After closing the connection the a pplication
must wait a specified time before the new connectio n.
When all fields are set to 1 (full access), the tim e limit
fields must be ignored.

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 22]

Firmware version packet
This packet transmits only by the interface.

Payload contents
Offset Length

(bytes)
Name Value Description

0 1 type 0x0A Packet type
1 4 params 0x00 For Firmware packet

this field value must
be zeroed

5 2 len 0x0C Payload length (in
bytes)

7 1 crc CRC of the packet
(header and data)

8 4 ver Field contains the
firmware version

12 4 subversion Field contains the
firmware subversion

16 4 pointversion Field contains the
firmware modification

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 23]

Packet aggregation
Packet segmentation
For sending multiple packets at once, the applicati on needs to
place those packets one-by-one in the TCP segment. Total size of
packets must not exceed 1446 bytes (MTU is 1500, mi nus header
size 54 bytes). The TILP device can also combine pa ckets in the
one TCP segment.

Autorization Audio PTT Serial

TCP segment

Alignment
All structures must be aligned on 1-byte boundaries .
Audio stream
Audio data is sent by the UDP protocol. The audio s tream is RTP
packets by RFC 3550. The audio stream from the inte rface to the
application is always stereo. The audio stream from the
application to the interface is always mono. The au dio stream is
full duplex. The interface sends audio data on that port and
address, from which audio stream was received. When the TCP
connection is closed, the audio stream must be term inated.

PTT/CW stream
For sending the CW manipulation state next packet t ype is used:

Num Ts
4 bytes 4 bytes

Data
16 bytes

Num – packet number
Ts – timestamp in milliseconds
Data – PTT and CW state

This stream is sending onto the separate UDP port.
The PTT and CW states are stored in the following f ormat.

 1
CW

 0 or 1
PTT

 0 or 1
CW

 0 or 1
PTT

 0 oro 1
CW

 0 r 1
PTT

 0 or 1
CW

 0 or 1
PTT

 0 or

07

byte 0
..... 1

CW
 0 or 1

PTT
 0 or 1

CW
 0 or 1

PTT
 0 or 1

CW
 0 or 1

PTT
 0 or 1

CW
 0 or 1

PTT
 0 or

07

byte 15
DTR and RTS pins of the serial port are polled by t imer with the
1ms interval. When the packet is filled with 16 sta tes, the CW
state packet is sending by the UDP to the address a nd port, as
specified in settings. After sending the packet, th e previous
packet is resending (for redundancy backup). The cu rrent packet
will be resend after sending the next packet. The p olling and
sending packets start after the connection is set, and
terminated after the connection is closed.

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 24]

Appendix A An example of the short session

Authentication
packet

Audio
settings
packet

PTT
state

tcp.socket.connect()

tcp.socket.connected == OK

type = 0

type = 2

type = 1

Access
levels
packet

A u d i o
settings
packet

PTT
state

WTI firmware
version

type = 1

type = 2

type = 9

type = 10

tcp.socket.close()

tcp.socket.disconnected == OK

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 25]

Appendix B The short session with the aggregated packets

tcp.socket.connect()

tcp.socket.connected == OK

type = 0type = 2type = 1

type = 1 type = 2 type = 9 type = 10

tcp.socket.close()

tcp.socket.disconnected == OK

Authentication
packet

Audio
settings
packet

PTT
state

#1#2#3

Access
levels packet

Audio
settings
packet

PTT
state

Firmware
version

#1 #2 #3 #4

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 26]

Appendix C The session with the audio streams example

tcp.socket.connect()

tcp.socket.connected == OK

type = 0type = 2type = 1

type = 1 type = 2 type = 9 type = 10

tcp.socket.close()

tcp.socket.disconnected == OK

Authentication
packet

Audio
settings packetPTT

state

#1#2#3

Access
levels
packet

Audio
settings packetPTT

state
Firmware
version

#1 #2 #3 #4

RTP audio stream start
transmitted during session()

UDP

The interface have
detected UDP
source port.
Audio stream
will be send
onto this port

RTP audio stream start
transmitted during session()

TCP

TCP

UDP

RTP streams stop

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 27]

Appendix D The session with the audio and CW/PTT streams

tcp.socket.connect()

tcp.socket.connected == OK

type = 0type = 2type = 1

type = 1 type = 2 type = 9 type = 10

tcp.socket.close()

tcp.socket.disconnected == OK

Authentication
packet

Audio
settings
packet

PTT
state

#1#2#3

Access
levels
packet

Audio
settings
packet

PTT
state

Firmware
version

#1 #2 #3 #4

RTP audio stream start
transmitted during session()

UDP 1

The interface have detected outbound audio stream.
The inbound audio stream will be send
to the same port.

TCP

TCP

RTP audio stream start
transmitted during session()

UDP 1

Terminating RTP streams

PTT/CW audio stream start
transmitted during session()

UDP 2

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 28]

Appendix E The session keepalive example

tcp.socket.connect()

tcp.socket.connected == OK

type = 0type = 2type = 1

type = 1 type = 2 type = 9 type = 10

tcp.socket.close()

tcp.socket.disconnected == OK

Authentication
packet

Audio
settings
packet

PTT
state

#1#2#3

Access
levels
packet

Audio
settings
packet

PTT
state

Firmware
version

#1 #2 #3 #4
TCP

TCP

The PTT state packets is sent for the session
keepalive at least 1 every 8 seconds.

PTT
state

#1
TCP

PTT
state

#1
TCP

type = 1

type = 1

 Transceiver IP Link Protocol Rev.1.0 (2016/02)

[Page 29]

Appendix F The serial ports data transfer example

tcp.socket.connect()

tcp.socket.connected == OK

type = 0type = 2type = 1

type = 1 type = 2 type = 9 type = 10

tcp.socket.close()

tcp.socket.disconnected == OK

Authentication
packet

Audio
settings
packet

PTT
state

#1#2#3

Access
levels
packet

Audio
settings
packet

PTT
state

Firmware
version

#1 #2 #3 #4
TCP

TCP

The PTT state packets is sent for the session
keepalive at least 1 every 8 seconds.

TTY
()

packet
the data received from PC serial port

TCP

type = 3...5

TTY
()

without data
notification about free buffer space

TCP

type = 3...5

TTY
()

data packet
data, received from the interface’s UART

TCP

type = 3...5

