
5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 1/14

RIGCTL
NAME

SYNOPSIS

DESCRIPTION
OPTIONS

COMMANDS

READLINE

DIAGNOSTICS

EXIT STATUS

EXAMPLES

BUGS

COPYING

SEE ALSO

COLOPHON

NAME

rigctl -
control radio transceivers and receivers

SYNOPSIS

rigctl [-hiIlLnouV]
[-m id] [-r device]
[-p device]
[-d device] [-P type]
[-D type] [-s baud]
[-
c id] [-t char]
[-C parm=val] [-v[-Z]]
[command|-]

DESCRIPTION

Control radio
transceivers and receivers. rigctl accepts
commands from the command line as well
as in
interactive mode if none are provided on the command
line.

Keep in mind
that Hamlib is BETA level software. While a lot of backend
libraries lack complete
rig support, the basic functions are
usually well supported.

Please report
bugs and provide feedback at the e-mail address given in the
BUGS section below.
Patches and code enhancements
sent to the same address are welcome.

OPTIONS

This program
follows the usual GNU command line syntax. Short options
that take an argument
may have the value follow immediately
or be separated by a space. Long options starting with two
dashes (’-’) require an ’=’ between
the option and any argument.

Here is a
summary of the supported options:

-m, --model=id

Select radio model number.

See model list
(use “rigctl -l”).

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 2/14

Note:
rigctl (or third party software using the C API) will
use radio model 2 for NET
rigctl (communicating with
rigctld).

-r,
--rig-file=device
Use device as the file
name of the port connected to the radio.

Often a serial
port, but could be a USB to serial adapter. Typically
/dev/ttyS0,
/dev/ttyS1, /dev/ttyUSB0,
etc. on Linux, COM1, COM2, etc. on MS Windows.
The BSD
flavors and Mac OS/X have their own designations.
See your system’s documentation.

Can be a
network address:port, e.g. 127.0.0.1:12345

The special
string “uh-rig” may be given to enable micro-ham
device support.
-p,
--ptt-file=device

Use device as the file
name of the Push-To-Talk device using a device file as
described
above.

-d,
--dcd-file=device
Use device as the file
name of the Data Carrier Detect device using a device file
as
described above.

-P,
--ptt-type=type
Use type of Push-To-Talk
device.

Supported types
are ’RIG’ (CAT command), ’DTR’,
’RTS’, ’PARALLEL’,
’CM108’,
’GPIO’,
’GPION’, ’NONE’, overriding PTT type
defined in the rig’s backend.

Some side
effects of this command are that when type is set to DTR,
read PTT state
comes from the Hamlib frontend, not
read from the radio. When set to NONE, PTT
state cannot be
read or set even if rig backend supports reading/setting PTT
status from
the rig.

-D,
--dcd-type=type
Use type of Data Carrier
Detect device.

Supported types
are ’RIG’ (CAT command), ’DSR’,
’CTS’, ’CD’, ’PARALLEL’,
’CM108’, ’GPIO’,
’GPION’, ’NONE’.

-s,
--serial-speed=baud
Set serial speed to baud
rate.

Uses maximum
serial speed from radio backend capabilities (set by
-m above) as the
default.

-c,
--civaddr=id
Use id as the CI-V
address to communicate with the rig.

Only useful for
Icom and some Ten-Tec rigs.

Note:
The id is in decimal notation, unless prefixed by
0x, in which case it is
hexadecimal.

-t,
--send-cmd-term=char
Change the termination
char for text protocol when using the send_cmd
command.

The default
value is ASCII CR (’0x0D’). ASCII non-printing
characters can be given as
the ASCII number in hexadecimal
format prepended with “0x”. You may pass an
empty
string for no termination char. The string
“-1” tells rigctl to switch to binary
protocol.
See the send_cmd command for further
explanation.

For example, to
specify a command terminator for Kenwood style text commands
pass
“-t ’;’” to rigctl. See
EXAMPLE below.

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 3/14

-L,
--show-conf
List all config parameters for
the radio defined with -m above.

-C,
--set-conf=parm=val[,parm=val]
Set radio configuration
parameter(s), e.g. stop_bits=2.

Use the
-L option above for a list of configuration
parameters for a given model
number.

-u,
--dump-caps
Dump capabilities for the radio
defined with -m above and exit.

-l, --list
List all model numbers defined
in Hamlib and exit.

The list is
sorted by model number.

Note: In
Linux the list can be scrolled back using
Shift-PageUp/Shift-PageDown, or
using the
scrollbars of a virtual terminal in X or the cmd window in
Windows. The
output can be piped to more(1) or
less(1), e.g. “rigctl -l | more”.

-o, --vfo
Enable vfo mode.

An extra VFO
argument will be required in front of each appropriate
command (except
set_vfo). Otherwise,
’currVFO’ is used when this option is not set
and an extra VFO
argument is not used.

-n,
--no-restore-ai
On exit rigctl restores
the state of auto information (AI) on the controlled
rig.

If this is not
desired, for example if you are using rigctl to turn
AI mode on or off, pass
this option.

-i,
--read-history
Read previously saved command
and argument history from a file (default
$HOME/.rigctl_history) for the current session.

Available when
rigctl is built with Readline support (see READLINE
below).

Note: To
read a history file stored in another directory, set the
RIGCTL_HIST_DIR
environment variable, e.g.
“RIGCTL_HIST_DIR=~/tmp rigctl -i”. When
RIGCTL_HIST_DIR is not set, the value of HOME is
used.

-I,
--save-history
Write current session (and
previous session(s), if -i option is given) command
and
argument history to a file (default
$HOME/.rigctl_history) at the end of the current
session.

Complete
commands with arguments are saved as a single line to be
recalled and used
or edited. Available when rigctl is
built with Readline support (see READLINE
below).

Note: To
write a history file in another directory, set the
RIGCTL_HIST_DIR
environment variable, e.g.
“RIGCTL_HIST_DIR=~/tmp rigctl -IRq. When
RIGCTL_HIST_DIR is not set, the value of HOME is
used.

-v, --verbose
Set verbose mode, cumulative
(see DIAGNOSTICS below).

-Y,--ignore-err
Ignores rig open errors

-Z,
--debug-time-stamps
Enable time stamps for the
debug messages.

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 4/14

Use only in
combination with the -v option as it generates no
output on its own.
-h, --help

Show a summary of these options
and exit.
-V, --version

Show version of rigctl
and exit.
- Stop option processing and read commands from standard
input.

See Standard
Input below.

Note:
Some options may not be implemented by a given backend and
will return an error. This is
most likely to occur with the
--set-conf and --show-conf options.

Please note
that the backend for the radio to be controlled, or the
radio itself may not support some
commands. In that case,
the operation will fail with a Hamlib error code.

COMMANDS

Commands can be
entered either as a single char, or as a long command name.
The commands are
not prefixed with a dash as the options
are. They may be typed in when in interactive mode or
provided as argument(s) in command line interface mode. In
interactive mode commands and their
arguments may be entered
on a single line:

M LSB
2400

Since most of
the Hamlib operations have a set and a
get method, an upper case letter will often be
used
for a set method whereas the corresponding lower case
letter refers to the get method. Each
operation also
has a long name; in interactive mode, prepend a backslash,
’\’, to enter a long
command name.

Example: Use
“\dump_caps” to see what capabilities this radio
and backend support.

Note:
The backend for the radio to be controlled, or the radio
itself may not support
some commands. In that case, the
operation will fail with a Hamlib error message.

Standard
Input

As an alternative to the READLINE interactive command
entry or a single command for each run,
rigctl
features a special option where a single dash
(’-’) may be used to read commands from
standard
input (stdin). Commands must be separated by
whitespace similar to the commands given
on the command
line. Comments may be added using the ’#’
character, all text up until the end of
the current line
including the ’#’ character is ignored.

A simple
example (typed text is in bold):

$ cat
<<.EOF. >cmds.txt

> # File of commands

> v f m
query
rig
> V
VFOB F
14200000
M CW
500

set rig

> v f m

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 5/14

query
rig

> .EOF.

$ rigctl -m1
- <cmds.txt

v VFOA

f 145000000

m FM

15000

V VFOB

F 14200000

M CW 500

v VFOB

f 14200000

m CW

500

$

rigctl
Commands

A summary of commands is included below (In the case of
set commands the quoted italicized
string is replaced
by the value in the description. In the case of get
commands the quoted italicized
string is the key name of the
value returned.):

Q|q, exit rigctl

Exit rigctl in interactive
mode.

When rigctl is
controlling the rig directly, will close the rig backend and
port. When
rigctl is connected to rigctld (radio model 2),
the TCP/IP connection to rigctld is closed
and rigctld
remains running, available for another TCP/IP network
connection.

F, set_freq
'Frequency'
Set 'Frequency', in
Hz.

Frequency may
be a floating point or integer value.
f, get_freq

Get 'Frequency', in
Hz.

Returns an
integer value and the VFO hamlib thinks is active. Note that
some rigs (e.g.
all Icoms) cannot track current VFO so
hamlib can get out of sync with the rig if the
user presses
rig buttons like the VFO.

M, set_mode
'Mode' 'Passband'
Set 'Mode' and
'Passband'.

Mode is a
token: ’USB’, ’LSB’,
’CW’, ’CWR’, ’RTTY’,
’RTTYR’, ’AM’, ’FM’,
’WFM’, ’AMS’, ’PKTLSB’,
’PKTUSB’, ’PKTFM’,
’ECSSUSB’, ’ECSSLSB’,
’FA’,
’SAM’, ’SAL’,
’SAH’, ’DSB’.

Passband is in
Hz as an integer, -1 for no change, or ’0’ for
the radio backend default.

Note:
Passing a ’?’ (query) as the first argument
instead of a Mode token will return a
space separated list
of radio backend supported Modes. Use this to determine the

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 6/14

supported Modes of a given radio backend.
m, get_mode

Get 'Mode' and
'Passband'.

Returns Mode as
a token and Passband in Hz as in set_mode above.
V, set_vfo
'VFO'

Set 'VFO'.

VFO is a token:
’VFOA’, ’VFOB’, ’VFOC’,
’currVFO’, ’VFO’, ’MEM’,
’Main’,
’Sub’, ’TX’,
’RX’.

In VFO mode
(see --vfo option above) only a single VFO parameter
is required:

$ rigctl -m
229 -r /dev/rig -o

Rig command: V

VFO: VFOB

Rig
command:
v, get_vfo

Get current 'VFO'.

Returns VFO as
a token as in set_vfo above.
J, set_rit
'RIT'

Set 'RIT'.

RIT is in Hz
and can be + or -. A value of ’0’ resets RIT
(Receiver Incremental Tuning)
to match the VFO
frequency.

Note:
RIT needs to be explicitly activated or deactivated with the
set_func command.
This allows setting the RIT offset
independently of its activation and allows RIT to
remain
active while setting the offset to ’0’.

j, get_rit
Get 'RIT' in Hz.

Returned value
is an integer.
Z, set_xit
'XIT'

Set 'XIT'.

XIT is in Hz
and can be + or -. A value of ’0’ resets XIT
(Transmitter Incremental
Tuning) to match the VFO
frequency.

Note:
XIT needs to be explicitly activated or deactivated with the
set_func command.
This allows setting the XIT offset
independently of its activation and allows XIT to
remain
active while setting the offset to ’0’.

z, get_xit
Get 'XIT' in Hz.

Returned value
is an integer.
T, set_ptt
'PTT'

Set 'PTT'.

PTT is a value:
’0’ (RX), ’1’ (TX), ’2’
(TX mic), or ’3’ (TX data).
t, get_ptt

Get 'PTT' status.

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 7/14

Returns PTT as
a value in set_ptt above.
S, set_split_vfo
'Split' 'TX VFO'

Set 'Split' mode.

Split is either
’0’ = Normal or ’1’ = Split.

Set 'TX
VFO'.

TX VFO is a
token: ’VFOA’, ’VFOB’,
’VFOC’, ’currVFO’,
’VFO’, ’MEM’, ’Main’,
’Sub’, ’TX’, ’RX’.

s,
get_split_vfo
Get 'Split' mode.

Split is either
’0’ = Normal or ’1’ = Split.

Get 'TX
VFO'.

TX VFO is a
token as in set_split_vfo above.
I, set_split_freq
'Tx Frequency'

Set 'TX Frequency', in
Hz.

Frequency may
be a floating point or integer value.
i,
get_split_freq

Get 'TX Frequency', in
Hz.

Returns an
integer value.
X, set_split_mode
'TX Mode' 'TX Passband'

Set 'TX Mode' and 'TX
Passband'.

TX Mode is a
token: ’USB’, ’LSB’,
’CW’, ’CWR’, ’RTTY’,
’RTTYR’, ’AM’, ’FM’,
’WFM’, ’AMS’, ’PKTLSB’,
’PKTUSB’, ’PKTFM’,
’ECSSUSB’, ’ECSSLSB’,
’FA’,
’SAM’, ’SAL’,
’SAH’, ’DSB’.

TX Passband is
in Hz as an integer, or ’0’ for the radio
backend default.

Note:
Passing a ’?’ (query) as the first argument
instead of a TX Mode token will return
a space separated
list of radio backend supported TX Modes. Use this to
determine the
supported TX Modes of a given radio
backend.

x,
get_split_mode
Get 'TX Mode' and 'TX
Passband'.

Returns TX Mode
as a token and TX Passband in Hz as in set_split_mode
above.
Y, set_ant
'Antenna' 'Option'

Set 'Antenna' and
'Option'.

Number is
1-based antenna# (’1’, ’2’,
’3’, ...).

Option depends
on rig..for Icom it probably sets the Tx & Rx antennas
as in the IC-
7851. See your manual for rig specific option
values. Most rigs don’t care about the
option.

For the
IC-7851, FTDX3000 (and perhaps others) it means this:

1 = TX/RX =
ANT1 FTDX3000=ANT1/ANT3

2 = TX/RX = ANT2 FTDX3000=ANT2/ANT3

3 = TX/RX = ANT3 FTDX3000=ANT3

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 8/14

4 = TX/RX = ANT1/ANT4

5 = TX/RX = ANT2/ANT4

6 = TX/RX = ANT3/ANT4

y, get_ant
'Antenna'
Get 'Antenna'

A value of 0
for Antenna will return the current TX antenna

> 0 is
1-based antenna# (’1’, ’2’,
’3’, ...).

Option returned
depends on rig..for Icom is likely the RX only flag.
b, send_morse
'Morse'

Send 'Morse'
symbols.
0x8b, get_dcd

Get 'DCD' (squelch)
status: ’0’ (Closed) or ’1’
(Open).
R, set_rptr_shift
'Rptr Shift'

Set 'Rptr Shift'.

Rptr Shift is
one of: ’+’, ’-’, or something else
for ’None’.
r,
get_rptr_shift

Get 'Rptr Shift'.

Returns
’+’, ’-’, or ’None’.
O, set_rptr_offs
'Rptr Offset'

Set 'Rptr Offset', in
Hz.
o,
get_rptr_offs

Get 'Rptr Offset', in
Hz.
C, set_ctcss_tone
'CTCSS Tone'

Set 'CTCSS Tone', in
tenths of Hz.
c,
get_ctcss_tone

Get 'CTCSS Tone', in
tenths of Hz.
D, set_dcs_code
'DCS Code'

Set 'DCS Code'.
d,
get_dcs_code

Get 'DCS Code'.
0x90,
set_ctcss_sql 'CTCSS Sql'

Set 'CTCSS Sql' tone, in
tenths of Hz.
0x91,
get_ctcss_sql

Get 'CTCSS Sql' tone, in
tenths of Hz.
0x92, set_dcs_sql
'DCS Sql'

Set 'DCS Sql' code.
0x93,
get_dcs_sql

Get 'DCS Sql'

code.

N, set_ts
'Tuning Step'
Set 'Tuning Step', in
Hz.

n, get_ts
Get 'Tuning Step', in
Hz.

U, set_func
'Func' 'Func Status'
Set 'Func' and 'Func
Status'.

Func is a
token: ’FAGC’, ’NB’,
’COMP’, ’VOX’, ’TONE’,
’TSQL’, ’SBKIN’,
’FBKIN’, ’ANF’, ’NR’,
’AIP’, ’APF’, ’MON’,
’MN’, ’RF’, ’ARO’,
’LOCK’, ’MUTE’,
’VSC’,
’REV’, ’SQL’, ’ABM’,
’BC’, ’MBC’, ’RIT’,
’AFC’, ’SATMODE’,
’SCOPE’,
’RESUME’,
’TBURST’, ’TUNER’,
’XIT’.

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 9/14

Func Status is
a non null value for “activate” or
“de-activate” otherwise, much as
TRUE/FALSE
definitions in the C language (true is non-zero and false is
zero, ’0’).

Note:
Passing a ’?’ (query) as the first argument
instead of a Func token will return a
space separated list
of radio backend supported set function tokens. Use this to
determine the supported functions of a given radio
backend.

u, get_func
'Func'
Get 'Func Status'.

Returns Func
Status as a non null value for the Func token given as in
set_func above.

Note:
Passing a ’?’ (query) as the first argument
instead of a Func token will return a
space separated list
of radio backend supported get function tokens. Use this to
determine the supported functions of a given radio
backend.

L, set_level
'Level' 'Level Value'
Set 'Level' and
'Level Value'.

Level is a
token: ’PREAMP’, ’ATT’,
’VOX’, ’AF’, ’RF’,
’SQL’, ’IF’, ’APF’,
’NR’,
’PBT_IN’,
’PBT_OUT’, ’CWPITCH’,
’RFPOWER’, ’RFPOWER_METER’,
’RFPOWER_METER_WATTS’, ’MICGAIN’,
’KEYSPD’, ’NOTCHF’,
’COMP’,
’AGC’, ’BKINDL’,
’BAL’, ’METER’,
’VOXGAIN’, ’ANTIVOX’,
’SLOPE_LOW’,
’SLOPE_HIGH’,
’RAWSTR’, ’SWR’, ’ALC’,
’STRENGTH’.

The Level Value
can be a float or an integer value. For the AGC token the
value is one
of ’0’ = OFF, ’1’ =
SUPERFAST, ’2’ = FAST, ’3’ = SLOW,
’4’ = USER, ’5’ =
MEDIUM,
’6’ = AUTO.

Note:
Passing a ’?’ (query) as the first argument
instead of a Level token will return a
space separated list
of radio backend supported set level tokens. Use this to
determine
the supported levels of a given radio backend.

l, get_level
'Level'
Get 'Level Value'.

Returns Level
Value as a float or integer for the Level token given as in
set_level
above.

Note:
Passing a ’?’ (query) as the first argument
instead of a Level token will return a
space separated list
of radio backend supported get level tokens. Use this to
determine
the supported levels of a given radio backend.

P, set_parm
'Parm' 'Parm Value'
Set 'Parm' and 'Parm
Value'.

Parm is a
token: ’ANN’, ’APO’,
’BACKLIGHT’, ’BEEP’,
’TIME’, ’BAT’,
’KEYLIGHT’.

Note:
Passing a ’?’ (query) as the first argument
instead of a Parm token will return a
space separated list
of radio backend supported set parameter tokens. Use this to
determine the supported parameters of a given radio
backend.

p, get_parm
'Parm'
Get 'Parm Value'.

Returns Parm
Value as a float or integer for the Parm token given as in
set_parm
above.

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 10/14

Note:
Passing a ’?’ (query) as the first argument
instead of a Parm token will return a
space separated list
of radio backend supported get parameter tokens. Use this to
determine the supported parameters of a given radio
backend.

B, set_bank
'Bank'
Set 'Bank'.

Sets the
current memory bank number.
E, set_mem
'Memory#'

Set 'Memory#' channel
number.
e, get_mem

Get 'Memory#' channel
number.
G, vfo_op
'Mem/VFO Op'

Perform a 'Mem/VFO
Op'.

Mem/VFO
Operation is a token: ’CPY’, ’XCHG’,
’FROM_VFO’, ’TO_VFO’,
’MCL’,
’UP’, ’DOWN’,
’BAND_UP’, ’BAND_DOWN’,
’LEFT’, ’RIGHT’, ’TUNE’,
’TOGGLE’.

Note:
Passing a ’?’ (query) as the first argument
instead of a Mem/VFO Op token will
return a space separated
list of radio backend supported Set Mem/VFO Op tokens. Use
this to determine the supported Mem/VFO Ops of a given radio
backend.

g, scan 'Scan
Fct' 'Scan Channel'
Perform a 'Scan Fct' on
a 'Scan Channel'.

Scan Function
is a token: ’STOP’, ’MEM’,
’SLCT’, ’PRIO’, ’PROG’,
’DELTA’,
’VFO’,
’PLT’.

Scan Channel is
an integer (maybe?).

Note:
Passing a ’?’ (query) as the first argument
instead of a Scan Fct token will return
a space separated
list of radio backend supported Scan Function tokens. Use
this to
determine the supported Scan Functions of a given
radio backend.

H, set_channel
'Channel'
Set memory 'Channel'
data.

Sets memory
channel information
h, get_channel
'readonly'

Get channel memory.

If readonly!=0
then only channel data is returned and rig remains on the
current
channel. If readonly=0 then rig will be set to the
channel requested. data.

A, set_trn
'Transceive'
Set 'Transceive'
mode.

Transcieve is a
token: ’OFF’, ’RIG’,
’POLL’.

Transceive is a
mechanism for radios to report events without a specific
call for
information.

Note:
Passing a ’?’ (query) as the first argument
instead of a Transceive token will
return a space separated
list of radio backend supported Transceive mode tokens. Use
this to determine the supported Transceive modes of a given
radio backend.

a, get_trn
Get 'Transceive'
mode.

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 11/14

Transceive mode
(reporting event) as in set_trn above.
*, reset
'Reset'

Perform rig 'Reset'.

Reset is a
value: ’0’ = None, ’1’ = Software
reset, ’2’ = VFO reset, ’4’ = Memory
Clear
reset, ’8’ = Master reset.

Since these
values are defined as a bitmask in
include/hamlib/rig.h, it should be
possible to AND
these values together to do multiple resets at once, if the
backend
supports it or supports a reset action via rig
control at all.

0x87,
set_powerstat 'Power Status'
Set 'Power Status'.

Power Status is
a value: ’0’ = Power Off, ’1’ =
Power On, ’2’ = Power Standby (enter
standby),
’4’ = Power Operate (leave standby).

0x88,
get_powerstat
Get 'Power Status' as in
set_powerstat above.

0x89, send_dtmf
'Digits'
Set DTMF 'Digits'.

0x8a,
recv_dtmf
Get DTMF 'Digits'.

_, get_info
Get misc information about the
rig.

0xf5,
get_rig_info
Get misc information about the
rig vfo status and other info.

0xf3,
get_vfo_info 'VFO'
Get misc information about a
specific vfo.

dump_state
Return certain state
information about the radio backend.

1, dump_caps
Not a real rig remote command,
it just dumps capabilities, i.e. what the backend knows
about this model, and what it can do.

TODO: Ensure
this is in a consistent format so it can be read into a
hash, dictionary, etc.
Bug reports requested.

Note:
This command will produce many lines of output so be very
careful if using a
fixed length array! For example, running
this command against the Dummy backend
results in over 5kB
of text output.

VFO parameter
not used in ’VFO mode’.
2, power2mW
'Power [0.0..1.0]' 'Frequency'
'Mode'

Returns 'Power mW'.

Converts a
Power value in a range of 0.0...1.0 to the
real transmit power in milli-Watts
(integer).

'Frequency'
and 'Mode' also need to be provided as output power
may vary according to
these values.

VFO parameter
is not used in VFO mode.
4, mW2power
'Power mW' 'Frequency' 'Mode'

Returns 'Power
[0.0..1.0]'.

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 12/14

Converts the
real transmit power in milli-Watts (integer) to a Power
value in a range of
0.0 ... 1.0.

'Frequency'
and 'Mode' also need to be provided as output power
may vary according to
these values.

VFO parameter
is not used in VFO mode.
w, send_cmd
'Cmd'

Send a raw command string to
the radio.

This is useful
for testing and troubleshooting radio commands and responses
when
developing a backend.

For binary
protocols enter values as \0xAA\0xBB. Expect a
'Reply' from the radio
which will likely be a binary
block or an ASCII string depending on the radio’s
protocol (see your radio’s computer control
documentation).

The command
terminator, set by the send-cmd-term option above,
will terminate each
command string sent to the radio. This
character should not be a part of the input string.

W, send_cmd_rx
'Cmd' nbytes
Send a raw command string to
the radio and expect nbytes returned.

This is useful
for testing and troubleshooting radio commands and responses
when
developing a backend. If the # of bytes requested is
<= the number actually returned no
timeout will
occur.

The command
argument can have no spaces in it. For binary protocols
enter values as
\0xAA\0xBB. Expect a 'Reply' from the
radio which will likely be a binary block or an
ASCII string
depending on the radio’s protocol (see your
radio’s computer control
documentation).

The command
terminator, set by the send-cmd-term option above,
will terminate each
command string sent to the radio. This
character should not be a part of the input string.

chk_vfo
Get 'Status'

Returns Status
as 1 if vfo option is on and 0 if vfo option is off. This
command reflects
the -o switch for rigctl and ritctld and
can be dynamically changed by set_vfo_opt.

set_vfo_opt
'Status'
Set 'Status'

Set vfo option
Status 1=on or 0=off This is the same as using the -o switch
for rigctl
and ritctld. This can be dyamically changed while
running.

pause
'Seconds'
Pause for the given whole
(integer) number of 'Seconds' before sending the next
command to the radio.

READLINE

If
Readline library development files are found at
configure time, rigctl will be conditonally built
with Readline support for command and argument entry.
Readline command key bindings are at
their defaults as
described in the
Readline
manual. rigctl sets the name “rigctl”
which can be used in
Conditional Init Constructs in the
Readline Init File ($HOME/.inputrc by default) for
custom
keybindings unique to rigctl.

https://tiswww.cwru.edu/php/chet/readline/rluserman.html

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 13/14

Command history
is available with Readline support as described in the
Readline
History manual.
Command and argument strings are stored
as single lines even when arguments are prompted for
input
individually. Commands and arguments are not validated and
are stored as typed with values
separated by a single
space.

Normally
session history is not saved, however, use of either of the
-i/--read-history or
-I/--save-
history options when starting
rigctl will cause any previously saved history to be
read in and/or the
current and any previous session history
(assuming the -i and -I options are given
together) will be
written out when rigctl is closed.
Each option is mutually exclusive, i.e. either may be given
separately or in combination. This is useful to save a set
of commands and then read them later but
not write the
modified history for a consistent set of test commands in
interactive mode, for
example.

History is
stored in $HOME/.rigctl_history by default although
the destination directory may be
changed by setting the
RIGCTL_HIST_DIR environment variable. When
RIGCTL_HIST_DIR is
unset, the value of the HOME
environment variable is used instead. Only the destination
directory
may be changed at this time.

If Readline
support is not found at configure time the original internal
command handler is used.
Readline is not used for
rigctl commands entered on the command line
regardless if Readline
support is built in or not.

Note:
Readline support is not included in the MS Windows 32 or 64
bit binary builds supplied by
the Hamlib Project. Running
rigctl on the MS Windows platform in the
’cmd’ shell does give
session command line
history, however, it is not saved to disk between
sessions.

DIAGNOSTICS

The -v,
--verbose option allows different levels of
diagnostics to be output to stderr and correspond
to
-v for BUG, -vv for ERR, -vvv for WARN,
-vvvv for VERBOSE, or -vvvvv for TRACE.

A given verbose
level is useful for providing needed debugging information
to the email address
below. For example, TRACE output shows
all of the values sent to and received from the radio
which
is very useful for radio backend library development and may
be requested by the developers.

EXIT STATUS

rigctl
exits with:
0 if all operations completed normally;
1 if there was an invalid command line option or
argument;
2 if an error was returned by Hamlib.

EXAMPLES
Start
rigctl for a Yaesu FT-920 using a USB to serial
adapter on Linux in interactive mode:

$ rigctl -m
1014 -r /dev/ttyUSB1

Start
rigctl for a Yaesu FT-920 using COM1 on MS Windows
while generating TRACE output to
stderr:

> rigctl
-m 1014 -r COM1 -vvvvv

https://tiswww.case.edu/php/chet/readline/history.html#SEC1

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 14/14

Start
rigctl for a Yaesu FT-920 using a USB to serial
adapter while setting baud rate and stop bits:

$ rigctl -m
1014 -r /dev/ttyUSB1 -s 4800 -C stop_bits=2

Start
rigctl for an Elecraft K3 using a USB to serial
adapter while specifying a command terminator
for the
w command:

$ rigctl -m
2029 -r /dev/ttyUSB0 -t’;’

Connect to a
running rigctld with radio model 2 (“NET
rigctl”) on the local host and specifying the
TCP
port, setting frequency and mode:

$ rigctl -m
2 -r localhost:4532 F 7253500 M LSB 0

BUGS

set_chan
has no entry method as of yet, hence left unimplemented.

This almost
empty section...

Report bugs
to:
Hamlib
Developer mailing list

COPYING

This file is
part of Hamlib, a project to develop a library that
simplifies radio, rotator, and amplifier
control functions
for developers of software primarily of interest to radio
amateurs and those
interested in radio communications.

Copyright
© 2000-2011 Stephane Fillod

Copyright © 2000-2018 the Hamlib Group (various
contributors)

Copyright © 2010-2020 Nate Bargmann

This is free
software; see the file COPYING for copying conditions. There
is NO warranty; not even
for MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE.

SEE ALSO
less(1),
more(1), rigctld(1), hamlib(7)

COLOPHON

Links to the
Hamlib Wiki, Git repository, release archives, and daily
snapshot archives are available
via
hamlib.org.

mailto:hamlib-developer@lists.sourceforge.net
http://www.hamlib.org/

