Antennas 101 Part 1 Dipoles, Doublets and Verticals

Rob May NV5E

Including:

- DipolesDoublets
- Loops
- Windoms
- G5RV
- End Fed Half Wave (EFHW)
- Beverage

Definitions

- Isotropic Radiator A theoretical antenna in free space that radiates equally well in all directions.
- Gain Increase in amplitude of a signal, measured in dB
- Decibel (dB) Logarithmic measurement of gain.
- dBi Gain measured in relation to an isotropic radiator

Definitions

- dBd Gain measured in relation to a dipole,
 dBd = dBi + 2.15.
- Azimuth Pattern Radiation pattern of the antenna when viewed from above. Directional or omni directional.
- Elevation Pattern Angle of maximum radiation in relation to the ground. Lower is better for DX.
- Balun Short for BALanced/UNbalanced. A device to force equal currents in coax.

How Much Gain is a dB?

0 dB = 1
1 dB = 1.26
2 dB = 1.58
3 dB = 1.99
4 dB = 2.51
5 dB = 3.16

6 dB = 3.98 = 1 S unit
7 dB = 5.01
8 dB = 6.31
9 dB = 7.94
10 dB = 10

Dipole

2.15 dB gain over an Isotropic Radiator

- Balanced design
- Resonant on one band
- Traps can be added to make it multiband
- Fan Dipole
- Nominal 50 ohm impedance

Gain increases with height (true for all antennas)

 Formula for calculating dipole length 468/F (MHz)

29-MHz Dipole at Various Heights above Average Ground						Table 3
Height wl	Len feet	Feed R	Feed X	Gain dBi	Gain dBd	El Angle
0.0625	16.14	59	0.2	0.49	-1.66	90
0.125	16.01	55.2	0	4.64	2.49	88
0.1875	15.94	65.8	-0.3	5.78	3.63	87
0.25	16.02	77.9	0.3	5.73	3.58	62
0.3125	16.17	85	0.1	5.75	3.6	46
0.375	16.32	84.7	0	6.07	3.92	37
0.4375	16.4	78.4	0.3	6.62	4.47	32
0.5	16.38	70.2	0.2	7.23	5.08	28
0.5625	16.29	64.5	-0.1	7.66	5.51	25
0.625	16.18	63.8	-0.2	7.75	5.6	22
0.6875	16.13	67.4	0.3	7.56	5.41	20
0.75	16.13	72.8	0.1	7.28	5.13	18
0.8125	16.18	77.1	0	7.12	4.97	17
0.875	16.26	78.1	0.1	7.15	5	16
0.9375	16.31	75.7	-0.1	7.34	5.19	15
1	16.31	71.6	-0.2	7.63	5.48	14
1.0625	16.27	68.2	0.2	7.85	5.7	13
1.125	16.21	67.2	0	7.9	5.75	12
1.1875	16.17	69	0.1	7.81	5.66	12
1.25	16.17	72.3	0.3	7.63	5.48	11
See text fo	or explanati	on of colur				

ht=1.0 wl ...0 dB -10 -20 -30

Elevation Patterns of a 29 MHz Dipole at Various Heights above Average Ground

Fig. 10

Diagrams from www.cebik.com

Dipole Cousins

- Inverted V Only needs one support. 5% shorter than a dipole. Takes up less space.
- Off Center Fed Dipole Feed point is 20-33% from one end. Feed point impedance is high and requires a 4-1 balun.
- Windom Similar to the OCFD. Fed at 34% from the end, it uses a single feed wire and can be resonant on more than one band.
- Double Bazooka Broad banded dipole made out of coax.

Doublets

- Doublet Multi-band antenna that is not resonant on a particular band. 88 ft and 44 ft are popular lengths. Requires antenna tuner.
 G5RV 102 ft. (3/2 λ) doublet with 31 (1/4 λ) ft of ladder line, then fed with coax. Designed as a 20m antenna. Multi-band with antenna tuner.
- Extended Double Zepp Longer than a dipole (5/8 wave or longer). 3 dB gain over a dipole. Fed by ¼ λ ladder line into a balanced tuner.

Loops

- A horizontal or vertical full wave continuous wire. One end connected to each lead of the feed line.
- Horizontal should be a square
- Vertical can be a square, circle, triangle (delta loop) or rectangle.
- Can be fed on anywhere along the loop.
- Mount triangles point down and feed at bottom.
- Impedance 80 150 ohms, use 2 1 or 4 1 Balun

Rhombics

- Four long wires forming two V's connected with a terminating resistor, making a large rhombic shape.
- Very large, each leg at least 1 2 wavelengths long.
- Very directional
- High gain
- Broad banded consistent gain and impedance over a 2 - 1 bandwidth.

Vertical Antennas

- Mono band ¼ wavelength with ¼ wave counter poise or radials or
- Vertical Dipole that does not require radials.
- Can be multiband with traps. Requires ¼ wave radials for each band or many (60+) short radials.
- Noisier than horizontal antennas
- Easier to hide in antenna restricted areas (can be disguised as flagpole or be a single wire in a tree)
- Gain is less than a dipole but the low angle of radiation is good for DX

End Fed Half Wave

- A dipole antenna that's fed at one end instead of the middle
- Very high impedance, 1800 5000 Ω .
- Requires a balun
- Single wire feed line

Very light, popular for QRP and backpacking

Par Electronics End Fedz

Transmission Lines

RG-58 RG-8/U RG-8/x (Mini 8) **RG-213** LMR400 **RG-59 RG-6** Ladder Line

Coax Connectors

SMA
BNC
UHF
N

Questions?

Sources:

Arrl Antenna Handbook – buy a used copy

www.cebik.com – Website of L.B. Cebik, W4RNL (SK). Must register, but it's free. There more good information here than anywhere!

www.google.com is your friend.

Antennas 101 Part 2 Directional And Gain Antennas aka "Beams"

Rob May NV5E

Types of Beams

Yagi – Uda
Moxon
Log Periodic
Quad
Hex (Spider) Beam

Yagi Antennas

Multi Elements – Driven element, reflector and director(s) Two to Ten or more elements About 70Ω nominal impedance Mono or Multiband Three element tri-bander (20 - 15 - 10m) is the most common

Yagi azimuth pattern.

Hy-Gain TH-3JRS

Moxon

- Invented by Les Moxon, G6XN
 Variation of the Yagi Uda
 More compact than Yagi, slightly less gain (0.2 dB)
 Popular for Field Day and Portable use
- Very high F/B ratio

Moxon Diagram

Homebrew Moxon

Log Periodic

LDPA – Log Periodic Dipole Array Very broadband, an octave or more Bigger and heavier than a Yagi Multiple band with a single feedpoint Alternating elements are phased 180° apart Uses stubs for impedance matching Example: Typical outdoor TV antenna

20 El., 100' 3-30 MHz LPDA VSWR LPCAD Files & Modifications **SWR (20100: 75 Ohms; Others: 95 Ohms)** 1.8 1.7 1.7 1.7 1.7 1.7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 6 ġ. 5 Ż 8 4 Frequency in MHz 20100 20100A 20100ATL ____ Fig. 6

LPDA SWR Plot

LPDA Azimuth Pattern

Tennadyne T-8 13 – 30 MHz

Quad

- Developed by <u>Clarence C. Moore</u>, W9LZX, at missionary radio station HCJB in Equador
- Lightweight, made of wire usually
- Usually two to four elements (2 element Quads are called "Cubical Quads" because of the cubical shape
- Can be monoband or multiband
- Multiband is complex to adjust because of element interaction

Quad Azimuth Pattern

Cubex Mk II, 2 Element Triband

Hex Beam

Small and light with low wind loading

Can be used on a lightweight tower with a small rotor

Less gain than a Yagi

- Relatively poor F/B ratio as you move farther from the resonant frequency
- Looks kind of odd

Hex Beam Azimuth Pattern

Traffie Hex Beam

Questions?

Sources:

- Arrl Antenna Handbook A must-have book, you can purchase a used copy for under \$20.00
- www.cebik.com Website of L.B. Cebik, W4RNL (SK). Must register, but it's free. There more good information here than anywhere!
- www.google.com is your friend.