

Vim

i

About the Tutorial

Vi IMproved (henceforth referred to as Vim) editor is one of the popular text editors. It

is clone of Vi editor and written by Bram Moolenaar. It is cross platform editor and

available on most popular platforms like Windows, Linux, Mac and other UNIX variants.

It is command-centric editor, so beginners might find it difficult to work with it. But once

you master it, you can solve many complex text-related tasks with few Vim commands.

After completing this tutorial, readers should be able to use Vim fluently.

 Audience

This tutorial is targeted for both beginners and intermediate users. After completing this

tutorial, beginners will be able to use Vim effectively whereas intermediate users will

take their knowledge to the next level.

Prerequisites

This tutorial assumes that reader has basic knowledge of computer system. Additionally,

reader should be able to install, uninstall and configure software packages on given

system.

Conventions

Following conventions are followed in entire tutorial:

$ command execute this command in terminal as a non-root user

10j execute this command in Vim’s command mode

:set nu execute this command in Vim’s command line mode

Copyright & Disclaimer

 Copyright 2018 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written

consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Vim

ii

Table of Contents

About the Tutorial .. i

Audience... i

Prerequisites ... i

Conventions .. i

Copyright & Disclaimer ... i

Table of Contents... ii

1. VIM – INTRODUCTION .. 1

Introduction ... 1

Features of Vim ... 1

Why Vim was Created .. 1

2. VIM – INSTALLATION AND CONFIGURATION .. 2

Installation on Windows platform ... 2

Installation on Debian based Linux .. 2

Installation on RPM based Linux .. 3

3. VIM – IT’S FRIENDS ... 5

Vi ... 5

Stevie ... 5

Elvis ... 5

nvi ... 5

Vim .. 6

Vile .. 6

Compatibility with original Vi .. 6

4. VIM – GETTING FAMILIAR .. 7

Start Vim.. 7

Vim modes ... 8

Vim

iii

Create new file .. 10

Open file in read-only mode .. 11

Edit existing file ... 11

5. VIM – GETTING HELP .. 13

Access help manual ... 13

Help on specific topic ... 13

Search help phrase in manual .. 14

Access online help ... 15

6. VIM - EDITING .. 16

Insert text before cursor .. 16

Insert text at the beginning of line ... 16

Append text after cursor .. 16

Append text at the end of line ... 17

Open new line below cursor .. 17

Open new line above cursor .. 17

Substitute text ... 17

Change text ... 18

Replace text ... 18

Join text ... 19

7. VIM - NAVIGATING ... 20

Basic navigation ... 20

Navigate to lines .. 20

Word navigation .. 21

Using jumps ... 21

8. VIM – REVISITING EDITING ... 22

Buffer .. 22

Vim

iv

Swap .. 22

Cut, Copy and paste actions ... 23

Multi-position command ... 23

Undo .. 23

Redo .. 23

9. VIM - SEARCHING ... 24

Search related settings .. 24

Search in current file .. 25

Search in multiple files ... 25

10. VIM – WORKING WITH MULTIPLE THINGS .. 26

Multiple files.. 26

Multiple buffers ... 26

Multiple tabs ... 27

Multiple windows .. 28

11. VIM - MARKERS ... 30

Create bookmark ... 30

Jump to bookmark ... 30

List all bookmarks .. 30

Delete bookmark ... 31

Local bookmarks and global bookmarks .. 31

12. VIM - MACROS .. 32

Start recording ... 32

Perform Vim actions .. 32

Stop recording ... 33

Play .. 33

13. VIM - REGISTERS ... 35

Vim

v

Copy text in register... 35

Paste text from register ... 35

List available registers ... 35

Register types .. 35

14. VIM - FOLDING .. 37

Fold activation and deactivation .. 37

Fold actions ... 37

15. VIM - DIFF ... 40

Show difference ... 40

Activate and deactivate diff mode ... 40

Navigation in diff mode ... 41

Apply changes from diff window ... 42

16. VIM – PLUG-INS .. 43

Plug-in management .. 43

Some useful plug-ins .. 44

17. VIM – USING VIM AS IDE ... 45

Syntax highlighting .. 45

Smart indentation .. 46

Bounce... 46

Execute shell commands .. 47

Configure ctags and cscope .. 47

Auto-completion and auto-suggesting ... 48

18. VIM – REMOTE FILE EDITING .. 49

Accessing remote files ... 49

Using nread and nwrite ... 49

Other supported protocols .. 49

Vim

vi

19. VIM – TIPS AND TRICKS ... 50

Convert spaces to tabs and vice-versa ... 50

Highlight miss-spelled words ... 50

Word completion ... 51

Copy character line by line ... 51

Indent code.. 52

Change file format ... 53

20. VIM - PERSONALIZATION .. 54

Configuration files ... 54

Changing fonts ... 55

Change colorscheme .. 55

Personal highlighting ... 55

21. VIM - CONCLUSION ... 58

Vim official documentation ... 58

Vim Scripting guide .. 58

Vim plug-ins ... 58

Vim

1

Vim editor is one of the more popular text editors we use today. It is a clone of the Vi

editor and is written by Bram Moolenaar. It is cross platform editor and available on

most popular platforms like Windows, Linux, Mac and other UNIX variants. In this

chapter, we will discuss following items:

 Introduction

 Features of Vim

 Why Vim was created?

Introduction

Vim is acronym for Vi IMproved. It is free and open source text editor written by Bram

Moolenaar. It was first released in 1991 for UNIX variants and its main goal was to

provide enhancement to the Vi editor, which was released way back in 1976.

Vim is considered as clone Vi editor. Like Vi, it is also command centric editor. One of the

advantage of learning Vim is – it is available everywhere. Take any UNIX variant like

Linux, Mac, HP-UX, AIX and many more, Vim is there by default. Vim traditionally does

not have GUI but now there is separate installer called gVim which provides GUI.

Features of Vim

This section discusses some of the important features of Vim:

 Its memory footprint is very low

 It is command centric. You can perform complex text related task with few commands

 It is highly configurable and uses simple text file to store its configuration

 There are many plug-in available for Vim. Its functionality can be extended in great manner

using these plug-in

 It supports multiple windows. Using this feature screen can be split into multiple windows

 Same as multiple windows, it also supports multiple buffers

 It supports multiple tabs which allows to work on multiple files

 It supports recording features which allows to record and play Vim commands in repeated

manner

Why Vim was Created

Vim is based on original Vi editor, which was created by Bill Joy in 1976. During 90’s Vi

was lacking behind in-the so called the editor war existed between the Vi and Emacs

editor. So Bram implemented a lots of missing features that the Emacs community used

as argument for why Emacs was better that Vi/Vim.

1. Vim – Introduction

Vim

2

Vim is lightweight package and its installation is really simple. In this chapter, we will

discuss following items:

 Installation on Windows platform

 Installation on Debian based Linux

 Installation on RPM based Linux

Installation on Windows platform

Vim doesn’t have any specific requirements. It is simple software bundle which provides

all dependencies.

 Installation

1. To download Vim visit vim.org

2. Click on Download option from left pane

3. Click on PC: MS-DOS and MS-Windows option

4. Download .exe installer from this page. At the time of writing this tutorial installer name

was gvim80.exe

5. Double click on installer and follow on screen instructions to complete installation

 Configuration

Vim stores its configuration in simple text file namely _vimrc and it is located

under home directory of user.

1. To find current user’s home directory execute below command in terminal:

$ echo %userprofile%

2. Navigate to home directory and create a new file namely _vimrc. Ensure that this file

doesn’t have any extension.

3. Open this file in text editor, enter following text and save it:

set nu

4. Now Vim will show line numbers when file is opened. We’ll add more options to this file

latter on.

Installation on Debian based Linux

Installation on Linux platform is quite simple as compared to Windows. This section

describes installation and configuration on Debian based Linux.

2. Vim – Installation and configuration

http://www.vim.org/
ftp://ftp.vim.org/pub/vim/pc/gvim80-586.exe

Vim

3

 Installation

1. Execute below command in terminal:

$ sudo apt-get update

$ sudo apt-get install vim

2. To ensure Vim is correctly installed execute below command:

$ which vim

3. It should print the location of Vim binary. In my case it was:

/usr/bin/vim

 Configuration

Vim stores its configuration in simple text file namely .vimrc and it is located

under home directory of user.

1. To find current user’s home directory execute below command in terminal:

$ echo $HOME

2. Navigate to home directory and create a new file namely .vimrc. Ensure that this file

doesn’t have any extension.

3. Open this file in text editor, enter following text and save it:

set nu

4. Now Vim will show line numbers when file is opened. We’ll add more options to this file

latter on.

Installation on RPM based Linux

This section describes installation and configuration on RPM based Linux.

 Installation

1. Execute below command in terminal:

$ su -

$ yum install vim

2. To ensure Vim is correctly installed execute below command:

$ which vim

3. It should print the location of Vim binary. In my case it was:

/usr/bin/vim

Vim

4

 Configuration

Vim stores its configuration in simple text file namely .vimrc and it is located

under home directory of user.

1. To find current user’s home directory execute below command in terminal:

$ echo $HOME

2. Navigate to home directory and create a new file namely .vimrc. Ensure that this file

doesn’t have any extension.

3. Open this file in text editor, enter following text and save it:

set nu

4. Now Vim will show line numbers when file is opened. We’ll add more options to this file

latter on.

Vim

5

Vim is clone of original Vi editor. In this chapter, we will discuss about other Vi clones.

Main purpose of this chapter to know other clones and its compatibility with original Vi

editor.

In this chapter, we will discuss following items:

 Vi

 Stevie

 Elvis

 nvi

 vile

 Compatibility with original Vi

Vi

Vi is acronym for Visual. It is screen-oriented text editor originally created for UNIX. The

original code for Vi was written by Bill Joy in 1976 and first released on BSD platform. Vi

was extension of ed editor which was most common at that time.

Vim was the first editor to introduce multiple modes. There is a separate mode for

editing text, selecting text and executing command. Vim editor supports all these

modes. Later sections of this tutorial describe these modes.

Stevie

Stevie editor was developed for Atari ST platform. It was released in 1987 it is an

abbreviation for ST Editor for VI enthusiastic.

It was very simple and provided only very small subset of the original Vi editor.

However, it provided familiar environment to user moving on Atari ST platform.

Elvis

Elvis’s main intention was to remove Stevie editor limitation. Stevie used to load entire

file in RAM, Elvis removed this limitation by introducing buffers. Also it added some

functionality into it like syntax highlighting, multiple window support, networking support

and simple GUI.

nvi

nvi stands for new Vi. It was a result of license dispute between AT & T lab and

Computer Science Research Group(CSRC) at university of California, Berkeley. Vi was

based on ed editor and was under license of AT & T which restricted them to distribute Vi

with BDS. Hence they rewrote Vi and released it under BSD license.

3. Vim – It’s friends

Vim

6

Vim

Vim is improved version of Vi and it added many features where Vi was lagging. It added

many useful features like:

 Multiple windows/tabs/buffers

 Introduction of Vim scripting language

 Syntax highlighting for more than 200 languages

 Integration with compilers, interpreters and debuggers

Vile

Vile is an abbreviation which stands for Vi like Emacs and it was an attempt to bring

popular features from both editor and combine it into one. Few popular features of Vile

are:

 One editing mode for each file type

 Introduction of Vile procedural language

 Named functions to bound keys according to user choice

Compatibility with original Vi

Though above discussed editors are considered as Vi clones they are not 100%

compatible with original Vi. Below table shows more details about their compatibility:

Clone Vi compatibility Notes

STEVIE 10% Limited features were common

Vile 10% Limited features and Vi modes were common

Elvis 80% Larger features were common

nvi 95% Larger features were common

Vim 99% Almost identical to Vi with some additional features

Vim

7

Beginning with this section we will get our hands dirty with Vim. In this chapter, we will

discuss following items:

 Start Vim

 Vim modes

 Create new file

 View file in read-only mode

 Edit existing file

Start Vim

Vim is little bit different than today’s GUI based editor. It can be started and used from

GUI as well as terminal.

 Use graphical launcher

To start Vim from graphical launcher just double click on gVim icon. It will open

editor window as follows:

 Use terminal

Using Vim from terminal will be identical on Windows as well as Linux platform.

Perform following steps to start and quit Vim from terminal:

1. Open terminal and enter vim command as follows:

$ vim

2. It will open Vim in terminal as follows:

4. Vim – Getting Familiar

Vim

8

3. To close this, press Esc key followed by colon(:) and q. In Vim q command stands for

quit. This command will be shown in bottom left corner of editor itself:

Vim modes

Vim supports multiple modes. This section discusses some of the important modes which

will be used on day-to-day basis.

1. Command mode

This is the default mode in which Vim starts. We can enter editor commands

in this mode. We can use variety of commands in this mode like copy, paste,

delete, replace and many more. We’ll discuss these commands in later

sections.

Vim

9

NOTE: Here onwards, any Vim command without colon indicates that

we are executing that command in command mode.

2. Insert mode

You can use this mode to enter/edit text. To switch from default command to

insert mode press i key. It will show current mode in bottom left corner of

editor.

We can enter any text once we are in insert mode. Below image shows this:

Use Escape key to switch back to command mode from this mode.

3. Command line mode

This mode is also used to enter commands. Commands in this mode starts

with colon(:). For instance, in previous section quit command was entered in

this mode. We can go to this mode either from command or insert mode.

 To switch from command mode to this mode just type colon

 To switch from insert mode to this mode press Escape and type colon

 In below image colon at bottom left indicates line mode.

Vim

10

NOTE: Here onwards, any Vim command starting with colon indicates

that we are executing that command in command line mode.

4. Visual mode

In this mode we can visually select text and run commands on selected

sections.

 To switch from command mode to visual mode type v

 To switch from any other mode to visual mode first switch back to command

mode by pressing Escape , then type v to switch to visual mode

 In below image bottom left corner shows visual mode.

Create new file

Perform below steps to create and save new file:

1. Execute following command to open Vim

$ vim

2. Type following command in Vim

:edit message.txt

It will reload file if, it exist already

3. Switch to insert mode

i

4. Enter some text

Vim

11

5. Switch back to command mode

Esc

6. Save changes to file

:w

Now message.txt file will be created.

7. Quit Vim

:q

Open file in read-only mode

Use –R option to open file in read-only mode

$ vim -R message.txt

In below image bottom left corner shows read-only mode:

Alternatively you can use view command to achieve same result.

$ view message.txt

Edit existing file

Perform below steps to edit existing file:

1. Open file using Vim

$ vim message.txt

Vim

12

2. Switch to insert mode and enter some text there.

i

3. Quit editor without saving changes

:q!

OR

Save changes and quit editor using following command:

:wq

Vim

13

Vim is feature rich editor hence remembering everything about it will be difficult. But

there is no need to worry, we can always ask for help. Fortunately this help is provided

by Vim itself.

In this chapter, we will discuss following items:

 Access help manual

 Help on specific topic

 Search help phrase in manual

 Access online help

Access help manual

Help manual is shipped with Vim editor itself and it is really comprehensive. To access

help execute below command:

:help

Help on specific topic

Help manual will show entire help about Vim. But what if, we are only interested in

certain topic. Vim provides command for that as well with following syntax:

:help <topic-name>

In above command replace <topic-name> with topic in which you are interested. For

5. Vim – Getting Help

Vim

14

instance to access help about vim mode, execute following command:

:help modes

Search help phrase in manual

You can search specific topic only if you know its name. But what if, you don’t know the

exact name of help topic. In that case you can use below command:

:helpgrep <phrase>

For instance, to access help about navigation in Vim execute below command:

:helpgrep navigation

Vim

15

Access online help

Vim also provides online help. To access online help:

1. Visit vim-help URL

2. Additionally you can also refer vim-docs documentation

http://www.vim.org/htmldoc/usr_01.html
https://vim.sourceforge.io/docs.php

Vim

16

Vim provides many commands which make editing functionality really powerful. In this

chapter, we will discuss following items:

 Insert

 Append

 Open new line

 Substitute

 Change

 Replace

 Join

Insert text before cursor

To insert text before cursor perform following steps:

1. Move cursor to appropriate position

2. Switch to insert mode

i

Insert text at the beginning of line

Let us suppose you are in the middle of line and you want to insert text at the beginning

of current line then perform following steps:

1. Switch to command mode

Esc

2. Activate insert mode

I

This action will move cursor to the beginning of current line and switch Vim in insert

mode

Append text after cursor

To append text after cursor perform following steps:

1. Switch to command mode and move cursor to appropriate position

Esc

2. Switch to insert mode

a

This action will move cursor next by one position and switch Vim in insert mode.

6. Vim - Editing

Vim

17

Append text at the end of line

Let us suppose you are in the middle of line and you want to append text at the end of

current line then perform following steps:

1. Switch to command mode

Esc

2. Switch to insert mode

A

This action will move cursor to the end of line and switch Vim in insert mode

Open new line below cursor

Let us suppose you are in the middle of line and you want to open new line below

current line then perform following steps:

1. Switch to command mode

Esc

2. Switch to insert mode

o

This action will insert blank line below current line and switch Vim in insert mode

Open new line above cursor

Let us suppose you are in the middle of line and you want to open new line above

current line then perform following steps:

1. Switch to command mode

Esc

2. Switch to insert mode

O

This action will insert blank line above current line and switch Vim in insert mode

Substitute text

Let us suppose you want to substitute single character then perform following steps:

1. Switch to command mode

Esc

2. Move cursor to appropriate position

3. Switch to insert mode

s

Vim

18

This action will delete character under cursor and switch Vim in insert mode

To substitute entire line use:

S

This action will delete entire line and switch Vim in insert mode.

Change text

Let us suppose you want to change text in current line then perform following steps:

1. Switch to command mode

Esc

2. Execute following command:

cc

This is similar to substitute action using S

To change text from current cursor position, execute following command:

C

This action will delete text after current cursor position and switch Vim in insert mode.

Replace text

To replace single character perform following steps:

1. Switch to command mode

Esc

2. Move cursor to appropriate position

3. Execute following command:

r

4. Enter character to be substituted.

Note that this command will not switch Vim in insert mode

To replace entire line execute:

R

It will switch Vim in replace mode as shown in below image:

Vim

19

Join text

To join two lines perform following steps:

1. Switch to command mode

Esc

2. Move cursor to appropriate line

3. Execute following command:

J

Vim

20

Vim has great support for advanced navigation. In this chapter, we’ll discuss some of the

popular navigation techniques which help to improve productivity.

Basic navigation

In basic navigation we can navigate to left, right, up and down by position. Below

commands can be used for this:

Command Description

h Move cursor to left by one position

l Move cursor to right by one position

k Move cursor to upward direction by one line

j Move cursor to downward direction by one line

To perform multi-position navigation use number with these commands. For instance to

navigate cursor 10 line below from current line, execute following command:

10j

You can use numbers with remaining commands as well.

In addition to this, below commands also perform some useful navigation.

Command Description

0 Move cursor to the beginning of current line

$ Move cursor to the end of current line

Ctrl + f Scroll down entire page

Ctrl + b Scroll up entire page

Navigate to lines

Below command can be used to navigate to specific line:

Command Description

:n Jump to the nth line

:0 Jump to the start of file

:$ Jump to the end of file

7. Vim - Navigating

Vim

21

Word navigation

We can use following commands for word navigation:

Command Description

w Move cursor to the beginning of the next word

e Move cursor to the end of the current word

b Move cursor to the beginning of the previous word

Using jumps

Vim keeps track of your navigation using a jump list. You can go backward and forward

through that list.

The jump list keeps tracks of all the places you’ve been to by tracking file name, line

number and column number.

To view jump list execute following command:

:jumps

Following command are based on jump list:

Command Description

Ctrl + o Jump back to the previous position

Ctrl + i Jump to the next position

Vim

22

We have seen basic editing earlier. Let us understand some other editing features of

Vim. In this section, we will discuss following items:

 Buffer

 Swap files

 Cut, copy, delete, paste actions

 Undo and redo actions

Buffer

Buffer is temporary memory used by Vim. When we open a file in editor, Vim loads its

contents from disk drive. These contents are stored in memory (RAM) whenever we edit

a file we are actually editing file from buffer. Once we finish editing and save file that

time only buffer contents are transferred to appropriate file.

Swap

Swap area is a file created by Vim to store buffer contents periodically. While editing file

our changes may be lost because of any reasons and Vim provides swap files to provide

data recovery.

To get actual name of swap file execute following command:

:swapname

For instance in my case name was message.txt.swp as show in below image:

8. Vim – Revisiting Editing

Vim

23

Cut, Copy and paste actions

We often perform cut, copy and paste actions on text. Vim provides following commands

to perform these actions (y stands for yank and p stands for paste action):

Command Description

x Delete character from cursor position

X Delete previous character from cursor position

y Copy single character from cursor position

p Paste character after cursor position

P Paste character before cursor position

Multi-position command

We can use cut, copy and paste commands with words and sentences as well. Below

table shows this:

Command Description

dw Delete word from cursor position

D Delete entire line from cursor position

dd Delete entire line

Y Copies entire line

yy Copies entire line

To perform multi-line/multi-word actions just use numbers with command. You can use

this syntax with other commands as well. For instance, to delete 3 words use :

3dw

Undo

We can undo single or multiple actions. To perform one time undo action execute:

u

To perform multiple undo action, use number with same command. For instance, below

command will undo last 3 actions:

3u

In addition to this, to undo all execute following command:

U

Redo

Redo is apposite action of undo. Execute any of the command to perform redo action.

Ctrl + r

OR

: red

Vim

24

Search is very common action and it is one of the actions we use most of the time. In

this chapter we will see some command which will allow performing these actions

effectively.

In this chapter, we will discuss following items:

 Search settings

 Search in current file

 Search in multiple files

 Search in help files

Search related settings

To perform incremental search execute following command:

:set incsearch

To highlight search execute following command:

:set hlsearch

This command will automatically highlight current matches. For instance in below image

fox word is highlighted:

To disable incremental and highlighted search execute following commands:

:set noincsearch

:set nohlsearch

9. Vim - Searching

Vim

25

Search in current file

 Search in forward direction

Use following commands to perform search in forward direction:

Command Description

/<expression> Search expression in forward direction

n Find next occurrence. This is same and find next

N Find previous occurrence. This is same as find previous

// Repeat previous forward search

 Search in backward direction

Use following commands to perform search in backward direction:

Command Description

?<expression> Search expression in backward direction

n Find previous occurrence. This is same and find previous

N Find next occurrence. This is same as find next

?? Repeat previous backward search

 Search word under cursor

Place cursor under any word and execute following commands to perform search

operation:

Command Description

* Search next occurrence of current word

Search previous occurrence of current word

Search in multiple files

Using vimgrep command we can search <expression> in multiple files. For instance

below command searches string - Jarvis in all text files.

:vimgrep Jarvis *.txt

Note that to go to next and previous occurrence we have to use following commands:

Command Description

:cn Go to next occurrence of expression

:cN Go to previous occurrence of expression

Vim

26

Vim is very powerful editor. It supports many advanced features to work with multiple

files, buffer and windows. In this section, we will discuss following items:

 Multiple files

 Multiple buffers

 Multiple tabs

 Multiple windows

Multiple files

Let us suppose you are editing a file and you want to open another file in same Vim

session. In that case, you can use Vim’s edit command. Below table shows these

commands

Command Description

:e Load new file in buffer for editing

:edit Same as :e

:e <tab> List the files for editing from current directory

:edit <tab> Same as :e <tab>

Multiple buffers

We have already seen what Vim buffers are. Vim supports multiple buffers. Below

commands will be useful will working with buffers:

Command Description

:badd <file> Add file into new buffer

:bN Switch to Nth buffer. For instance to switch to 3rd buffer use :b3

:bnext Move to the next buffer in buffer list

:bprevious Move to the previous buffer in buffer list

:buffers List all buffers

:bfirst Move to the first buffer

:blast Move to the last buffer

:ball Load all buffers

For instance, below command adds new file to buffer:

10. Vim – Working with multiple things

Vim

27

Now, there are two files in buffer. Execute below command to show this:

:buffers

It will show following output:

Multiple tabs

Like other editors we can also open multiple tabs in Vim. Below table describes tab

related commands:

Command Description

:tabnew Open new tab

Vim

28

:tabnew <file> Open new file in tab

:tabclose Close current tab

:tabnext Move to the next tab

:tabprevious Move to the previous tab

:tabfirst Move to the first tab

:tablast Move to the last tab

For instance, below images shows multiple tabs:

Multiple windows

In Vim we can create new window using following commands:

Command Description

:new Open new window

:new <file> Open file in new window

In below image, we can see that current Vim window is split into 2 parts after executing

following commands:

$vim message.txt

:new

Vim

29

Vim

30

Vim supports bookmark feature. Using this feature we can make navigation within file

really faster. In this chapter, we will discuss following items:

 Create bookmark

 Jump to bookmark

 List all bookmarks

 Delete bookmarks

 Local bookmarks

 Global bookmarks

Create bookmark

To create bookmark execute following command:

m{bookmark-name}

In above example bookmark-name is single alphabetical character. For instance, below

command creates bookmark of name a.

ma

Jump to bookmark

Once bookmark is created we can jump there. Following command can be use to jump to

bookmark:

Command Description

`{bookmark-name} Move to the exact location of bookmark. Please note that this

character is back quote

‘{bookmark-name} Jump to the beginning of bookmark line. Please note that this

character is single quote

List all bookmarks

To list all bookmarks execute following command:

:marks

In below image it show list of bookmarks for current file:

11. Vim - Markers

Vim

31

Delete bookmark

To delete bookmarks execute following command:

:delmarks {bookmark-name}

For instance, below command delete bookmark with name a.

:delmarks a

Local bookmarks and global bookmarks

When you have multiple files open and if you want to go to a particular position in any

one of the open files, then you can use global mark feature of Vim.

If the bookmark name is an upper case letter, then that is a global Bookmark. Above

discussed commands are applicable for both local and global bookmarks.

Vim

32

Macro is record and play feature. When this is combined with Vim commands it becomes

really powerful combination. In this section, we will discuss following items:

 Start recording

 Perform Vim actions

 Stop recording

 Play recording

Start recording

To start recording press q followed by any lower case letter as a macro name. For

instance in below example I have used “a” as a macro name

Perform Vim actions

In this step you can perform any Vim actions like: cut, copy, delete, replace and so on.

You can see these actions by executing following command:

:registers

For instance, below command shows that yank and delete actions were performed:

12. Vim - Macros

Vim

33

Stop recording

Once you are done with actions, press q again to stop recording. Now recording mode

will disappear as shown below:

Play

To play execute below command:

@{macro-name}

For instance to execute macro “a”, execute below command:

Vim

34

@a

To play same macro multiple times use numbers with it. For instance, to execute same

macro 10 times execute following command:

10@a

Vim

35

Vim provides many registers. We can use these registers as multiple clipboards. This

feature is really useful while working with multiple files. In this chapter, we will discuss

following items:

 Copy text in register

 Paste text from register

 List available registers

 Register types

Copy text in register

For copying, we can use normal yank command i.e. yy and to store it in register we can

use following syntax:

“<register-name><command>

For instance, to copy text in register “a” use following command:

“ayy

Paste text from register

To paste text from register use:

“<register-name>p

For instance, below command copies text from register “a”:

“ap

List available registers

To list all available registers use following command:

:registers

Register types

Vim supports following types of registers:

 Unnamed registers

Unnamed register is denoted by “”. Vim stores deleted or copied text in this

register

 Named registers

We can use 26 named registers; we can use a-z or A-Z. By default vim doesn’t

uses these registers.

13. Vim - Registers

Vim

36

If we use lower case register name then contents will be overwritten and if we

use uppercase name then contents will be appended in that register.

 Numbered registers

We can use 0 to 9 named registers. Vim fills these registers with text from yank

and delete command.

o Numbered register 0 contains the text from the most recent yank command.

o Numbered register 1 contains the text deleted by the most recent delete or change

command

 Default registers

Following are the default registers:

Register Description

% Name of the current file

Name of the alternate file for the current window.

: Most recently executed command

. Contains the last inserted text

“ Last used register

Vim

37

Fold functionality will be useful when file contents large text. Using this feature we can

only show selected potion of file. This feature is particularly useful while working with

programming languages. In this chapter, we will discuss following items:

 Activate and deactivate fold functionality

 Various fold actions

Fold activation and deactivation

To activate fold use following command:

:set foldenable

:set foldmethod=indent

To deactivate fold use following command:

:set nofoldenable

Fold actions

 Close fold

To fold code, go to any method and execute following command:

zc

For example below image shows the result of this action:

 Open fold

14. Vim - Folding

Vim

38

To open fold use following command:

zo

Below image shows the result of this action:

 Close all folds

To close all folds execute following command:

zM

Below image shows the result of this action:

Vim

39

 Unfold all

To unfold all execute following command:

zR

Below image shows the result of this action:

Vim

40

Similar to UNIX diff command we can use Vim to show diff in much better manner. It will

show diff in colorful manner. In this chapter, we will discuss following items:

 Show differences between files

 Activate and deactivate diff mode

 Navigation in diff mode

 Applying changes from diff window

Show difference

To show differences between files execute below command:

$ vimdiff <file> <file>

OR

$ vim –d <file> <file>

For instance below command shows differences:

In above image, text highlighted in magenta color is common. Remaining text is

highlighted in red color which indicates that there are some differences after common

text.

Activate and deactivate diff mode

If you are already in vim and you want to perform diff action, then use one of the

following command:

15. Vim - Diff

Vim

41

 diffsplit

Use below command to perform horizontal split:

:diffsplit filename

Above images shows that we are comparing two files namely message-1.txt and

message-2.txt.

 Vertical diffsplit

To perform vertical split use following command:

:vert diffsplit <filename>

It opens following window:

Above images shows that we are comparing two files namely message-1.txt and

message-2.txt.

Navigation in diff mode

Navigation in diff mode is little bit different. For instance, when you scroll text from one

window then text from adjacent window also scrolled. This is called scrollbind. To enable

this use:

Vim

42

:set scrollbind

To disable this use:

:set noscrollbind

If you edit file in this mode then use following command to update diff:

:diffupdate

 Switch between diff window

To switch between diff windows execute following command:

Ctrl + w Ctrl + w

Please note that, we have to press Ctrl + w 2 times.

 Jump to previous change

In diff window, execute following command to jump to previous change:

[c

 Jump to next change

In diff window, execute following command to jump to next change:

]c

Apply changes from diff window

 Applying change in current diff windows

To apply change from adjacent diff window to current diff windows execute:

:diffget

For instance, if you are in left window and you want to take change from right

window to current window then you will execute above command.

 Apply change from current pane to another

To apply change from current diff window to adjacent diff window execute:

:diffput

For instance, if you are in left window and you want apply change from current

window to right window then you will execute above command.

Vim

43

Using plug-ins, we can extends the functionality of Vim. Vim supports many plug-ins and

most of them are available freely. This chapter is about Vim plug-ins and we will discuss

following items:

 Plug-in management

 Some useful plug-ins

Plug-in management

This section discusses plug-in management. Vim provides various plug-ins managers but

we won’t be using any plug-in manager, instead we’ll be doing all these steps manually

for better understanding. Once you understand these steps, you can go with plug-in

manager.

 Install plug-in

To install any plug-in perform following steps:

1. Create .vim/bundle directory in user’s home directory

2. Copy plug-in inside this directory

3. Set runtimepath in vim

 Let us install badwolf plug-in in Vim. It is a color scheme for vim.

$ mkdir -p ~/.vim/bundle

$ cd ~/.vim/bundle/

$ git clone https://github.com/sjl/badwolf.git

$ echo "set runtimepath^=~/.vim/bundle/badwolf" > ~/.vimrc

Now plug-in is installed, so we can use badwold color scheme as follows:

:colorscheme badwolf

 Update plug-in

If we observe carefully, plug-in is a just collection of files and if we want to

update that plug-in then just update appropriate plug-in directory from

~/.vim/bundle.

 Remove plug-in

Removing plug-in in Vim is really simple. To remove plug-in perform following

steps:

1. Remove plug-in directory from ~/.vim/bundle

2. Modify runtimepath appropriately

16. Vim – Plug-ins

https://github.com/sjl/badwolf.git

Vim

44

Some useful plug-ins

Below is list of some useful Vim plug-ins:

Name Description

DumpX Disassemble C/C++ code

awk.vim Indenting for AWK script

Pathogen Vim package manager

git-switcher.vim Automatically save and load vim session based on switching of git

branch

Pyflakes Provide liniting for python files

Vim

45

We can configure Vim to use it as an IDE. In this section, we will discuss following items:

 Syntax highlighting

 Smart indentation

 Bounce

 Execute shell commands

 Configuring ctags and csope

 Auto-completion and auto-suggestion

Syntax highlighting

Syntax highlighting is one of the important features of IDE. To enable syntax highlighting

use:

:syntax on

For instance, below image show syntax highlighting for C code:

To disable syntax highlighting use:

:syntax off

When syntax highlighting is disabled, it will show following output:

17. Vim – Using Vim as IDE

Vim

46

Smart indentation

To perform auto and smart indentation use following commands:

: set autoindent

: set smartindent

In addition to this you can use below command to auto-indent C code:

: set cindent

Bounce

If you are using programming language which uses curly braces to combine multiple

statements then % key will be your friend. This key will jump between start and end of

curly braces quickly.

For instance, you are at line 11 and execute % command then it will move cursor the

line 4. Below image shows this:

Vim

47

Execute shell commands

To execute single command from Vim editor user:

:!<command>

For instance, to execute pwd command use following syntax:

:!pwd

However, if you want to multiple shell commands then execute following command:

:shell

Above command will give you terminal access, where you can execute multiple

commands. Once you are done with it, just type exit command which will return back to

Vim session.

Configure ctags and cscope

Combination of ctags and csope provides many useful features like go to function

definition, go to function declaration, find function calls, search file, and many more.

Perform below steps to configure these tools:

1. Generate tags using following command:

$ ctags <file>

This command will generate new file namely tags

2. Provide tag file to vim using following command:

:set tags=tag

3. Now move your cursor under function name and press Ctrl +] to go to function definition.

4. Use Ctrl + t to come back to previous position

Vim

48

To install and configure cscope perform following steps:

1. Install cscope

$ sudo apt-get install cscope

2. Generate ctags and launch main window

$ cscope –R

3. User Ctrl + d to close cscope window

Auto-completion and auto-suggesting

We can use following commands for auto-completion:

Command Description

Ctrl + x Ctrl + N Word completion

Ctrl + x Ctrl + L Line completion

Ctrl + x Ctrl + F File name completion

Note that we have to use these commands in insert mode.

Vim

49

Many times we need to work with remote servers. And often we edit files from those

remote servers. One of the obvious solution to edit those files is to log in to the remote

sever and edit files. But sometimes it is convenient to edit those files from local machine

because we might have installed and configured various plug-in on our local system. In

this chapter, we will discuss following items:

 Access remote files

 Understand netread and netwrite

 Other supported protocol

Accessing remote files

Vim supports remote file editing using following syntax:

$vim scp://user@server.com/filepath

In above example vim will recognize that it has to use scp protocol and it will access file

using that protocol. For instance:

$ vim scp://jarvis@remote-server.com//tmp/message.txt

Above command will open /tmp/message.txt file from remote-server. It will use SCP

protocol and jarvis user’s credentials for authentication.

Using nread and nwrite

Vim supports nread and nwrite functionality which stands for net read and net write

respectively. Previous section shows method to access remote file while launching Vim.

But what if you are already in Vim? Then you can use following commands:

:Nread scp://jarvis@localhost//tmp/message.txt

In addition to reading we can also modify file on remote server directly. In that case use

Nwrite command as follows:

:Nwrite scp://jarvis@localhost//tmp/message.txt

Once file is opened, you can use regular Vim commands.

Other supported protocols

In addition to SCP, Vim supports following protocols:

1. FTP

2. SFTP

3. HTTP (read-only)

4. rsync

18. Vim – Remote File Editing

ftp://user@server.com/filepath

Vim

50

Now we got fair idea about Vim. Let us discuss few tips and tricks of Vim to improve

productivity. In this section, we will discuss following items:

 Convert spaces to tabs and vice-versa

 Highlight miss-spelled words

 Word completion

 Copy line character by character

 Indent code

 Change file format

Convert spaces to tabs and vice-versa

 Convert tabs to spaces

If you are editing a file and you want to convert entered tab character to spaces

then execute following command:

:set expandtab

Note that, this command will not change existing tabs to spaces. To achieve this

execute following command:

: set tabstop=4 shiftwidth=4 expandtab

:retab

In above command we are instructing Vim to convert tabs into 4 spaces

 Convert spaces to tabs

To convert spaces to tabs execute below command:

:set noexpandtab

:retab!

Highlight miss-spelled words

We can instruct Vim to highlight miss-spelled words. To do this execute following

command:

:set spell

Below image highlights misspelled word in Vim:

19. Vim – Tips and Tricks

Vim

51

Word completion

Vim also provides word completion. For this execute following command in insert mode:

Ctrl + p

Copy character line by line

Use following command to copy and paste line character by character:

Command Description

Ctrl + y Copy and paste text located above the cursor

Vim

52

Ctrl + e Copy and paste text located below the cursor

Note the we have to use these commands in insert mode.

Indent code

If you have un-indented code to indent it execute following command:

=%

For instance, if you have un-indented code like this:

Then go to line 4 and execute =% command. It will indent code like this:

Vim

53

Change file format

To change file format to UNIX execute following command:

:set ff=unix

To change file format to DOS execute following command:

:set ff=dos

Vim

54

We can personalize Vim according to our requirement. In this section, we will discuss

following items:

 Configuration files

 Changing fonts

 Changing color scheme

 Personal highlighting

 Status line

Configuration files

For Vim configuration files can be at user level or global level. User specific settings will

be stored in user level files while global settings will be stored in global level files.

 Vimrc file

o Global vimrc

To find out global vimrc file execute following command in editor

:echo $VIM

OR

:echo \%VIM\%

On Linux this file will be located under /usr/share/vim directory while on

Window it will be under C:\Program Files\Vim folder

o Local vimrc

Local vimrc will be located under user’s home directory. For instance, on

Linux it will be under /home/<USER> directory while on Windows it will be

under C:\Documents and Setting\<USER>/ folder

Note that, on Windows file name will be _vimrc whereas on Linux it will be .vimrc.

 Gvimrc

o Global gvimrc

On Linux this file will be located under /usr/share/gvim directory while on

Window it will be under C:\Program Files\Vim folder

o Local gvimrc

Local gvimrc will be located under user’s home directory. For instance, on

Linux it will be under /home/<USER> directory while on Windows it will be

under C:\Documents and Setting\<USER>/ folder

Note that, on Windows file name will be _gvimrc whereas on Linux it will be

20. Vim - Personalization

Vim

55

.gvimrc.

 exrc

exrc files are used for backward compatibility. These files are ignored if either

vimrc or gvimrc file is present.

o Global exrc

On Linux this file will be located under /usr/share/vim directory while on

Window it will be under C:\Program Files\Vim folder

o Local exrc

Local exrc will be located under user’s home directory. For instance, on

Linux it will be under /home/<USER> directory while on Windows it will be

under C:\Documents and Setting\<USER>/_exrc folder

Changing fonts

To change font execute following command in gVim:

:set guifont=courier

Above command will change font to courier.

Change colorscheme

To change color scheme execute following command:

:colorscheme <tab>

When you press tab character, it will show available color schemes for Vim.

Personal highlighting

 Highlight characters after certain columns

Execute below command to highlight columns greater than 73:

:match ErrorMsg /\%>73v.\+/

Below image shows this:

Vim

56

Below is description of this command:

Command Description

\%> Match after column

73 This is column number

V It should work for virtual columns only

.\+ Match one or more characters

 Add line number

To add line number execute following command:

:set number

To disable this execute following command:

:set nonumber

 Set number width

To set number width execute following command:

:set numberwidth=<num>

 Spell check

To enable spell check execute following command:

:set spell

And to set spell language execute following command:

:set spelllang=<language>

For example to set German use following comman:

Vim

57

:set spelllang=de

 Abbreviation

Using abbreviation we can create shortcuts for long string. For instance below

command creates abbreviation namely “quick”.

:abbr quick the quick brown fox

If you type “quick” and press tab then it will be replaced by “the quick brown fox”

string

We can use this to correct some typos. For instance below command does this:

:abr teh the

 Status line

Status line is shown at the bottom of editor. To enable status line execute

following command:

:set laststatus=2

To remove this for current session execute following command:

:set laststatus=0

Vim

58

Vim is really powerful editor and now you can get your hands dirty with it. Mastering Vim

will really improve your productively. Using Vim you can solve many complex tasks with

few commands. You can refer following documentation to know more about Vim.

Vim official documentation

You can access Vim’s official documentation from following website:

http://www.vim.org/

Vim Scripting guide

You can enhance vim further by writing scripts to it. It has its own scripting language. To

know more about it, visit following link:

https://vim.sourceforge.io/scripts/index.php

Vim plug-ins

Vim plug-ins further extend its functionality and makes you more productive. You can

install, configure and even write plug-ins for Vim. You can refer documentation regarding

this from their official website.

21. Vim - Conclusion

http://www.vim.org/
https://vim.sourceforge.io/scripts/index.php

