
9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 1/37

Edit this on GitHub

Raspberry Pi OS is a free operating system based on Debian, optimised for the Raspberry
Pi hardware, and is the recommended operating system for normal use on a Raspberry Pi.
The OS comes with over 35,000 packages: precompiled software bundled in a nice format
for easy installation on your Raspberry Pi.

Raspberry Pi OS is under active development, with an emphasis on improving the stability
and performance of as many Debian packages as possible on Raspberry Pi.

Edit this on GitHub

It’s important to keep your Raspberry Pi up to date. The first and probably the most
important reason is security. A device running Raspberry Pi OS contains millions of lines of
code that you rely on. Over time, these millions of lines of code will expose well-known
vulnerabilities, which are documented in publicly available databases meaning that they
are easy to exploit. The only way to mitigate these exploits as a user of Raspberry Pi OS is
to keep your software up to date, as the upstream repositories track CVEs closely and try
to mitigate them quickly.

The second reason, related to the first, is that the software you are running on your device
most certainly contains bugs. Some bugs are CVEs, but bugs could also be affecting the
desired functionality without being related to security. By keeping your software up to date,
you are lowering the chances of hitting these bugs.

The easiest way to manage installing, upgrading, and removing software is using APT
(Advanced Packaging Tool) from Debian. To update software in Raspberry Pi OS, you can
use the apt tool from a Terminal window.

Raspberry Pi OS

Introduction

Updating and Upgrading Raspberry Pi OS

Using APT

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/os/rpi-os-introduction.adoc
https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/os/updating.adoc
https://cve.mitre.org/index.html

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 2/37

APT keeps a list of software sources on your Raspberry Pi in a file at
/etc/apt/sources.list. Before installing software, you should update your package list
with apt update. Go ahead and open a Terminal window and type:

Next, upgrade all your installed packages to their latest versions with the following
command:

Note that full-upgrade is used in preference to a simple upgrade, as it also picks up any
dependency changes that may have been made.

Generally speaking, doing this regularly will keep your installation up to date for the
particular major Raspberry Pi OS release you are using (e.g. Buster). It will not update from
one major release to another, for example, Stretch to Buster or Buster to Bullseye.

However, there are occasional changes made in the Raspberry Pi OS image that require
manual intervention, for example a newly introduced package. These are not installed with
an upgrade, as this command only updates the packages you already have installed.

NOTE

Keeping your Operating System up to Date

Watch on

How to upgrade your Raspberry Pi in TerminalHow to upgrade your Raspberry Pi in Terminal
Watch laterWatch later ShareShare

sudo apt update

sudo apt full-upgrade

https://www.youtube.com/watch?v=2AhCWJ6YQHk&feature=emb_imp_woyt
https://www.youtube.com/watch?v=2AhCWJ6YQHk
https://www.youtube.com/channel/UCFIjVWFZ__KhtTXHDJ7vgng?feature=emb_ch_name_ex

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 3/37

The kernel and firmware are installed as a Debian package, and so will also get
updates when using the procedure above. These packages are updated infrequently
and after extensive testing.

If moving an existing SD card to a new Raspberry Pi model (for example the Raspberry Pi
Zero 2 W), you may also need to update the kernel and the firmware first using the
instructions above.

When running sudo apt full-upgrade, it will show how much data will be downloaded and
how much space it will take up on the SD card. It’s worth checking with df -h that you
have enough free disk space, as unfortunately apt will not do this for you. Also be aware
that downloaded package files (.deb files) are kept in /var/cache/apt/archives. You can
remove these in order to free up space with sudo apt clean (sudo apt-get clean in older
releases of apt).

WARNING

Upgrading an existing image is possible, but is not guaranteed to work in every
circumstance and we do not recommend it. If you do wish to try upgrading your
operating system version, we strongly suggest making a backup first — we can accept
no responsibility for loss of data from a failed update.

The latest version of Raspberry Pi OS is based on Debian Bullseye. The previous version
was based on Buster. If you want to perform an in-place upgrade from Buster to Bullseye
(and you’re aware of the risks) see the instructions in the forums.

You can search the archives for a package with a given keyword with apt-cache search:

You can view more information about a package before installing it with apt-cache show:

Running Out of Space

Upgrading from Previous Operating System Versions

Searching for Software

apt-cache search locomotive

sl - Correct you if you type `sl' by mistake

apt-cache show sl

Package: sl

Version: 3.03-17

Architecture: armhf

Maintainer: Hiroyuki Yamamoto <yama1066@gmail.com>

https://www.raspberrypi.com/news/raspberry-pi-os-debian-bullseye/
https://www.raspberrypi.com/news/buster-the-new-version-of-raspbian/
https://forums.raspberrypi.com/viewtopic.php?t=323279

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 4/37

Typing this command should inform the user how much disk space the package will take
up and asks for confirmation of the package installation. Entering Y (or just pressing Enter,
as yes is the default action) will allow the installation to occur. This can be bypassed by
adding the -y flag to the command:

Installing this package makes tree available for the user.

You can uninstall a package with apt remove:

The user is prompted to confirm the removal. Again, the -y flag will auto-confirm.

You can also choose to completely remove the package and its associated configuration
files with apt purge:

Installed-Size: 114

Depends: libc6 (>= 2.4), libncurses5 (>= 5.5-5~), libtinfo5

Homepage: http://www.tkl.iis.u-tokyo.ac.jp/~toyoda/index_e.html

Priority: optional

Section: games

Filename: pool/main/s/sl/sl_3.03-17_armhf.deb

Size: 26246

SHA256: 42dea9d7c618af8fe9f3c810b3d551102832bf217a5bcdba310f119f62117dfb

SHA1: b08039acccecd721fc3e6faf264fe59e56118e74

MD5sum: 450b21cc998dc9026313f72b4bd9807b

Description: Correct you if you type `sl' by mistake

 Sl is a program that can display animations aimed to correct you

 if you type 'sl' by mistake.

 SL stands for Steam Locomotive.

Installing a Package with APT

sudo apt install tree

sudo apt install tree -y

Uninstalling a Package with APT

sudo apt remove tree

sudo apt purge tree

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 5/37

rpi-update is a command line application that will update your Raspberry Pi OS kernel and
VideoCore firmware to the latest pre-release versions.

WARNING

Pre-release versions of software are not guaranteed to work. You should not use rpi-
update on any system unless recommended to do so by a Raspberry Pi engineer. It
may leave your system unreliable or even completely broken. It should not be used as
part of any regular update process.

The rpi-update script was originally written by Hexxeh, but is now supported by Raspberry
Pi engineers. The script source is in the rpi-update repository.

rpi-update will download the latest pre-release version of the linux kernel, its matching
modules, device tree files, along with the latest versions of the VideoCore firmware. It will
then install these files to relevant locations on the SD card, overwriting any previous
versions.

All the source data used by rpi-update comes from the rpi-firmware repository. This
repository simply contains a subset of the data from the official firmware repository, as not
all the data from that repo is required.

If you are sure that you need to use rpi-update, it is advisable to take a backup of your
current system first as running rpi-update could result in a non-booting system.

rpi-update needs to be run as root. Once the update is complete you will need to reboot.

It has a number of options documented in the rpi-update repository.

If you have done an rpi-update and things are not working as you wish, if your Raspberry
Pi is still bootable you can return to the stable release using:

Using rpi-update

What it does

Running rpi-update

sudo rpi-update

sudo reboot

How to get back to safety

https://github.com/Hexxeh
https://github.com/raspberrypi/rpi-update
https://github.com/raspberrypi/rpi-firmware
https://github.com/raspberrypi/firmware
https://github.com/raspberrypi/rpi-update

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 6/37

You will need to reboot your Raspberry Pi for these changes to take effect.

Edit this on GitHub

WARNING

The following documentation refers to Raspberry Pi OS Buster and earlier versions.
OMXPlayer has been deprecated in the latest OS release. If you are running Bullseye, VLC is
now the recommended alternative.

The simplest way of playing audio and video on Raspberry Pi is to use the installed
OMXPlayer application.

This is hardware accelerated, and can play back many popular audio and video file
formats. OMXPlayer uses the OpenMAX (omx) hardware acceleration interface (API) which
is the officially supported media API on Raspberry Pi. OMXPlayer was developed by the
Kodi Project’s Edgar Hucek.

The simplest command line is omxplayer <name of media file>. The media file can be
audio or video or both. For the examples below, we used an H264 video file that is included
with the standard Raspberry Pi OS installation.

By default the audio is sent to the analog port. If you are using a HDMI-equipped display
device with speakers, you need to tell omxplayer to send the audio signal over the HDMI
link.

When displaying video, the whole display will be used as output. You can specify which
part of the display you want the video to be on using the window option.

sudo apt-get update

sudo apt install --reinstall libraspberrypi0 libraspberrypi-{bin,dev,doc} raspb
errypi-bootloader raspberrypi-kernel

Playing Audio and Video

The OMXPlayer Application

omxplayer /opt/vc/src/hello_pi/hello_video/test.h264

omxplayer --adev hdmi /opt/vc/src/hello_pi/hello_video/test.h264

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/os/playing-audio-and-video.adoc
https://www.raspberrypi.com/news/raspberry-pi-os-debian-bullseye/

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 7/37

You can also specify which part of the video you want to be displayed: this is called a crop
window. This portion of the video will be scaled up to match the display, unless you also
use the window option.

If you are using the Raspberry Pi Touch Display, and you want to use it for video output,
use the display option to specify which display to use. n is 5 for HDMI, 4 for the
touchscreen. With the Raspberry Pi 4 you have two options for HDMI output. n is 2 for
HDMI0 and 7 for HDMI1.

To play an MP3 file, navigate to the location of the .mp3 file in the terminal using cd and
then type the following command:

This will play the audio file example.mp3 through either your monitor’s built-in speakers or
your headphones, connected via the headphone jack.

If you need an example file you can download one from here using the following
command:

If you cannot hear anything, make sure your headphones or speakers are connected
correctly. Note that omxplayer doesn’t use ALSA and so ignores the audio configuration
set by raspi-config or amixer.

If omxplayer’s auto-detection of the correct audio output device fails, you can force output
over HDMI with:

omxplayer --win 0,0,640,480 /opt/vc/src/hello_pi/hello_video/test.h264

omxplayer --crop 100,100,300,300 /opt/vc/src/hello_pi/hello_video/test.h264

omxplayer --display n /opt/vc/src/hello_pi/hello_video/test.h264

How to Play Audio

omxplayer example.mp3

wget https://raw.githubusercontent.com/raspberrypilearning/burping-jelly-baby/m
aster/data/la.mp3 -O example.mp3 --no-check-certificate

https://www.raspberrypi.com/products/raspberry-pi-touch-display/
https://www.raspberrypi.com/documentation/computers/configuration.html#audio-configuration

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 8/37

Alternatively, you can force output over the headphone jack with:

You can even force output over both the headphone jack and HDMI with:

To play a video, navigate to the location of your video file in the terminal using cd, then type
the following command:

This will play the example.mp4 in full screen. Hit Ctrl + C to exit.

On the Raspberry Pi 4, hardware support for MPEG2 and VC-1 codecs has been removed,
so we recommend the use of the VLC application, which supports these formats in
software. In addition, VLC has hardware support for H264 and the new HEVC codec.

A video sample of the animated film Big Buck Bunny is available on your Raspberry Pi. To
play it enter the following command into a terminal window:

On a Raspberry Pi 4, use the following command for H264 files:

or for H264, VC1, or MPEG2

omxplayer -o hdmi example.mp3

omxplayer -o local example.mp3

omxplayer -o both example.mp3

How to Play Video

omxplayer example.mp4

An Example Video

omxplayer /opt/vc/src/hello_pi/hello_video/test.h264

omxplayer /opt/vc/src/hello_pi/hello_video/test.h264

vlc /opt/vc/src/hello_pi/hello_video/test.h264

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 9/37

When using VLC, you can improve playback performance by encapsulating the raw H264
stream, for example from the Raspberry Pi Camera Module. This is easily done using
ffmpeg. Playback is also improved if VLC is run full screen; either select fullscreen from the
user interface, or you can add the --fullscreen options to the vlc command line.

This example command converts video.h264 to a containerised video.mp4 at 30 fps:

ffmpeg -r 30 -i video.h264 -c:v copy video.mp4

There are a number of options available during playback, actioned by pressing the
appropriate key. Not all options will be available on all files. The list of key bindings can be
displayed using omxplayer --keys:

omxplayer will close immediately if run in the background without tty (user input), so to run
successfully, you need to tell omxplayer not to require any user input using the --no-keys
option.

Options During Playback

 1 decrease speed

 2 increase speed

 < rewind

 > fast forward

 z show info

 j previous audio stream

 k next audio stream

 i previous chapter

 o next chapter

 n previous subtitle stream

 m next subtitle stream

 s toggle subtitles

 w show subtitles

 x hide subtitles

 d decrease subtitle delay (- 250 ms)

 f increase subtitle delay (+ 250 ms)

 q exit omxplayer

 p / space pause/resume

 - decrease volume

 + / = increase volume

 left arrow seek -30 seconds

 right arrow seek +30 seconds

 down arrow seek -600 seconds

 up arrow seek +600 seconds

Playing in the Background

omxplayer --no-keys example.mp3 &

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 10/37

Adding the & at the end of the command runs the job in the background. You can then
check the status of this background job using the jobs command. By default, the job will
complete when omxplayer finishes playing, but if necessary, you can stop it at any point
using the kill command.

Edit this on GitHub

Rather than using the Raspberry Pi camera module, you can use a standard USB webcam
to take pictures and video on your Raspberry Pi.

NOTE

The quality and configurability of the camera module is highly superior to a standard
USB webcam.

First, install the fswebcam package:

If you are not using the default pi user account, you need to add your username to the
video group, otherwise you will see 'permission denied' errors.

To check that the user has been added to the group correctly, use the groups command.

Enter the command fswebcam followed by a filename and a picture will be taken using the
webcam, and saved to the filename specified:

$ jobs

[1]- Running omxplayer --no-keys example.mp3 &

$ kill %1

$

[1]- Terminated omxplayer --no-keys example.mp3 &

Using a USB webcam

sudo apt install fswebcam

sudo usermod -a -G video <username>

Basic Usage

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/os/using-webcams.adoc
https://www.raspberrypi.com/documentation/accessories/camera.html#camera-modules

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 11/37

This command will show the following information:

NOTE

The small default resolution used, and the presence of a banner showing the
timestamp.

The webcam used in this example has a resolution of 1280 x 720 so to specify the
resolution I want the image to be taken at, use the -r flag:

This command will show the following information:

fswebcam image.jpg

--- Opening /dev/video0...

Trying source module v4l2...

/dev/video0 opened.

No input was specified, using the first.

Adjusting resolution from 384x288 to 352x288.

--- Capturing frame...

Corrupt JPEG data: 2 extraneous bytes before marker 0xd4

Captured frame in 0.00 seconds.

--- Processing captured image...

Writing JPEG image to 'image.jpg'.

fswebcam -r 1280x720 image2.jpg

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 12/37

Picture now taken at the full resolution of the webcam, with the banner present.

Now add the --no-banner flag:

which shows the following information:

--- Opening /dev/video0...

Trying source module v4l2...

/dev/video0 opened.

No input was specified, using the first.

--- Capturing frame...

Corrupt JPEG data: 1 extraneous bytes before marker 0xd5

Captured frame in 0.00 seconds.

--- Processing captured image...

Writing JPEG image to 'image2.jpg'.

Removing the Banner

fswebcam -r 1280x720 --no-banner image3.jpg

--- Opening /dev/video0...

Trying source module v4l2...

/dev/video0 opened.

No input was specified, using the first.

--- Capturing frame...

Corrupt JPEG data: 2 extraneous bytes before marker 0xd6

Captured frame in 0.00 seconds.

--- Processing captured image...

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 13/37

Now the picture is taken at full resolution with no banner.

You can write a Bash script which takes a picture with the webcam. The script below
saves the images in the /home/pi/webcam directory, so create the webcam subdirectory first
with:

To create a script, open up your editor of choice and write the following example code:

This script will take a picture and name the file with a timestamp. Say we saved it as
webcam.sh, we would first make the file executable:

Disabling banner.

Writing JPEG image to 'image3.jpg'.

Automating Image Capture

mkdir webcam

#!/bin/bash

DATE=$(date +"%Y-%m-%d_%H%M")

fswebcam -r 1280x720 --no-banner /home/pi/webcam/$DATE.jpg

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 14/37

Then run with:

Which would run the commands in the file and give the usual output:

You can use cron to schedule taking a picture at a given interval, such as every minute to
capture a time-lapse.

First open the cron table for editing:

This will either ask which editor you would like to use, or open in your default editor. Once
you have the file open in an editor, add the following line to schedule taking a picture every
minute (referring to the Bash script from above):

Save and exit and you should see the message:

Ensure your script does not save each picture taken with the same filename. This will
overwrite the picture each time.

chmod +x webcam.sh

./webcam.sh

--- Opening /dev/video0...

Trying source module v4l2...

/dev/video0 opened.

No input was specified, using the first.

--- Capturing frame...

Corrupt JPEG data: 2 extraneous bytes before marker 0xd6

Captured frame in 0.00 seconds.

--- Processing captured image...

Disabling banner.

Writing JPEG image to '/home/pi/webcam/2013-06-07_2338.jpg'.

Time-Lapse Captures

crontab -e

* * * * * /home/pi/webcam.sh 2>&1

crontab: installing new crontab

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 15/37

Edit this on GitHub

There are several useful command line

tvservice is a command line application used to get and set information about the display,
targeted mainly at HDMI video and audio.

Typing tvservice by itself will display a list of available command line options.

Power on the HDMI output with preferred settings.

Powers off the display output.

NOTE

Powering off the output using this command will also destroy any
framebuffers/dispmanx layers associated with the display. These are NOT re-
established with a subsequent power on, so will result in a blank screen.

A better option is to use the vcgencmd display_power option, as this will retain any
framebuffers, so when the power is turned back on the display will be the returned to the
previous power on state.

Power on the HDMI with the specified settings

Group can be one of CEA, DMT, CEA_3D_SBS, CEA_3D_TB, CEA_3D_FP, CEA_3D_FS.

Mode is one of the modes returned from the -m, --modes option.

Drive can be one of HDMI, DVI.

Use 59.94Hz (NTSC frequency) rather than 60Hz for HDMI mode.

Useful Utilities

tvservice

-p, --preferred

-o, --off

-e, --explicit="Group Mode Drive"

-t, --ntsc

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/os/graphics-utilities.adoc

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 16/37

Power on the SDTV (composite output) with the specified mode, PAL or NTSC, and the
specified aspect, 4:3, 14:9, 16:9. The optional P parameter can be used to specify
progressive mode.

where Group is CEA or DMT.

Shows a list of display modes available in the specified group.

Monitors for any HDMI events, for example unplugging or attaching.

Shows the current settings for the display mode, including mode, resolution, and
frequency.

Shows the current settings for the audio mode, including channels, sample rate and
sample size.

Save the current EDID to the specified filename. You can then use edidparser <filename>
to display the data in a human readable form.

When used in combination with the --modes options, displays the mode information in
JSON format.

Extracts the display name from the EDID data and shows it.

-c, --sdtvon="Mode Aspect [P]"

-m, --modes=Group

-M, --monitor

-s, --status

-a, --audio

-d, --dumpid=filename

-j, --json

-n, --name

-l, --list

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 17/37

Lists all attached displays and their display ID.

Specifies the ID of the device to use; see the output of --list for available IDs.

The vcgencmd tool is used to output information from the VideoCore GPU on the Raspberry
Pi. You can find source code for the vcgencmd utility on Github.

To get a list of all commands which vcgencmd supports, use vcgencmd commands. Some
useful commands and their required parameters are listed below.

The vcos command has two useful sub-commands:

version displays the build date and version of the firmware on the VideoCore

log status displays the error log status of the various VideoCore firmware areas

Displays the build date and version of the VideoCore firmware.

Displays the enabled and detected state of the Raspberry Pi camera: 1 means yes, 0
means no. Whilst all firmware except cutdown versions support the camera, this support
needs to be enabled by using raspi-config.

Returns the throttled state of the system. This is a bit pattern - a bit being set indicates the
following meanings:

Bit Hex value Meaning

0 0x1 Under-voltage detected

1 0x2 Arm frequency capped

-v, --device=display

vcgencmd

vcos

version

get_camera

get_throttled

https://github.com/raspberrypi/userland/tree/master/host_applications/linux/apps/gencmd
https://www.raspberrypi.com/documentation/computers/configuration.html#raspi-config

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 18/37

Bit Hex value Meaning

2 0x4 Currently throttled

3 0x8 Soft temperature limit active

16 0x10000 Under-voltage has occurred

17 0x20000 Arm frequency capping has
occurred

18 0x40000 Throttling has occurred

19 0x80000 Soft temperature limit has
occurred

Returns the temperature of the SoC as measured by its internal temperature sensor;
on
Raspberry Pi 4, measure_temp pmic returns the temperature of the PMIC.

This returns the current frequency of the specified clock. The options are:

clock Description

arm ARM core(s)

core GPU core

h264 H.264 block

isp Image Sensor Pipeline

v3d 3D block

uart UART

pwm PWM block (analogue audio output)

emmc SD card interface

pixel Pixel valves

vec Analogue video encoder

hdmi HDMI

dpi Display Parallel Interface

e.g. vcgencmd measure_clock arm

measure_temp

measure_clock [clock]

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 19/37

Displays the current voltages used by the specific block.

block Description

core VC4 core voltage

sdram_c SDRAM Core Voltage

sdram_i SDRAM I/O voltage

sdram_p SDRAM Phy Voltage

Displays the content of the OTP (one-time programmable) memory inside the SoC. These
are 32 bit values, indexed from 8 to 64. See the OTP bits page for more details.

Display value of the configuration setting specified: alternatively, specify either int (integer)
or str (string) to see all configuration items of the given type. For example:

returns the total memory on the device in megabytes.

Reports on the amount of memory addressable by the ARM and the GPU. To show the
amount of ARM-addressable memory use vcgencmd get_mem arm; to show the amount of
GPU-addressable memory use vcgencmd get_mem gpu. Note that on devices with more
than 1GB of memory the arm parameter will always return 1GB minus the gpu memory
value, since the GPU firmware is only aware of the first 1GB of memory. To get an accurate
report of the total memory on the device, see the total_mem configuration item - see
get_config section above.

Reports whether the specified CODEC type is enabled. Possible options for type are AGIF,
FLAC, H263, H264, MJPA, MJPB, MJPG, MPG2, MPG4, MVC0, PCM, THRA, VORB, VP6,
VP8, WMV9, WVC1. Those highlighted currently require a paid for licence (see the this
config.txt section for more info), except on the Raspberry Pi 4 and 400, where these

measure_volts [block]

otp_dump

get_config [configuration item|int|str]

vcgencmd get_config total_mem

get_mem type

codec_enabled [type]

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#otp-register-and-bit-definitions
https://www.raspberrypi.com/documentation/computers/config_txt.html#licence-key-and-codec-options

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 20/37

hardware codecs are disabled in preference to software decoding, which requires no
licence. Note that because the H.265 HW block on the Raspberry Pi 4 and 400 is not part
of the VideoCore GPU, its status is not accessed via this command.

Displays the resolution and colour depth of any attached display.

Displays statistics on any OOM (out of memory) events occurring in the VideoCore
memory space.

Displays statistics from the relocatable memory allocator on the VideoCore.

Returns the current speed voltage and temperature of the ring oscillator.

Displays the current HDMI settings timings. See Video Config for details of the values
returned.

Dump a list of all dispmanx items currently being displayed.

Show current display power state, or set the display power state. vcgencmd display_power
0 will turn off power to the current display. vcgencmd display_power 1 will turn on power to
the display. If no parameter is set, this will display the current power state. The final
parameter is an optional display ID, as returned by tvservice -l or from the table below,
which allows a specific display to be turned on or off.

Note that for the 7" Raspberry Pi Touch Display this simply turns the backlight on and off.
The touch functionality continues to operate as normal.

vcgencmd display_power 0 7 will turn off power to display ID 7, which is HDMI 1 on a
Raspberry Pi 4.

Display ID

get_lcd_info

mem_oom

mem_reloc_stats

read_ring_osc

hdmi_timings

dispmanx_list

display_power [0 | 1 | -1] [display]

https://www.raspberrypi.com/documentation/computers/config_txt.html#video-options

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 21/37

Display ID

Main LCD 0

Secondary LCD 1

HDMI 0 2

Composite 3

HDMI 1 7

To determine if a specific display ID is on or off, use -1 as the first parameter.

vcgencmd display_power -1 7 will return 0 if display ID 7 is off, 1 if display ID 7 is on, or -1
if display ID 7 is in an unknown state, for example undetected.

vcdbg is an application to help with debugging the VideoCore GPU from Linux running on
the ARM. It needs to be run as root. This application is mostly of use to Raspberry Pi
engineers, although there are some commands that general users may find useful.

sudo vcdbg help will give a list of available commands.

NOTE

Only options of use to end users have been listed.

Shows various items of version information from the VideoCore.

Dumps logs from the specified subsystem. Possible options are:

log Description

msg Prints out the message log

assert Prints out the assertion log

ex Prints out the exception log

info Prints out information from the logging
headers

vcdbg

version

log

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 22/37

log Description

level Sets the VCOS logging level for the specified
category, n|e|w|i|t

list List the VCOS logging levels

e.g. To print out the current contents of the message log:

vcdbg log msg

List all memory allocations current in the VideoCore heap.

List the current status of the pool allocator

Without any further parameters, lists the current status of the relocatable allocator. Use
sudo vcdbg reloc small to list small allocations as well.

Use the subcommand sudo vcdbg reloc stats to list statistics for the relocatable
allocator.

Commands related to task history.

Use sudo vcdbg hist gnuplot to dump task history in gnuplot format to task.gpt and
task.dat

Edit this on GitHub

Python is a powerful programming language that’s easy to use easy to read and write and,
with Raspberry Pi, lets you connect your project to the real world. Python syntax is clean,
with an emphasis on readability, and uses standard English keywords.

malloc

pools

reloc

hist

Python

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/os/using-python.adoc

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 23/37

The easiest introduction to Python is through Thonny, a Python 3 development
environment. You can open Thonny from the desktop or applications menu.

Thonny gives you a REPL (Read-Evaluate-Print-Loop), which is a prompt you can enter
Python commands into. Because it’s a REPL, you even get the output of commands
printed to the screen without using print. In the Thonny application, this is called the Shell
window.

You can use variables if you need to but you can even use it like a calculator. For example:

Thonny also has syntax highlighting built in and some support for autocompletion. You
can look back on the history of the commands you’ve entered in the REPL with Alt + P
(previous) and Alt + N (next).

Hello world in Python:

Simple as that!

Some languages use curly braces { and } to wrap around lines of code which belong
together, and leave it to the writer to indent these lines to appear visually nested. However,
Python does not use curly braces but instead requires indentation for nesting. For example
a for loop in Python:

The indentation is necessary here. A second line indented would be a part of the loop, and
a second line not indented would be outside of the loop. For example:

Thonny

>>> 1 + 2

3

>>> name = "Sarah"

>>> "Hello " + name

'Hello Sarah'

Basic Python usage

print("Hello world")

Indentation

for i in range(10):

 print("Hello")

https://thonny.org/

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 24/37

would print:

whereas the following:

would print:

To save a value to a variable, assign it like so:

Note that data types were not specified with these variables, as types are inferred, and can
be changed later.

This time I used comments beside the increment command.

for i in range(2):

 print("A")

 print("B")

A

B

A

B

for i in range(2):

 print("A")

print("B")

A

A

B

Variables

name = "Bob"

age = 15

age = 15

age += 1 # increment age by 1

print(age)

Comments

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 25/37

Comments are ignored in the program but there for you to leave notes, and are denoted by
the hash # symbol. Multi-line comments use triple quotes like so:

Python also has lists (called arrays in some languages) which are collections of data of
any type:

Lists are denoted by the use of square brackets [] and each item is separated by a
comma.

Some data types are iterable, which means you can loop over the values they contain. For
example a list:

This takes each item in the list numbers and prints out the item:

Note I used the word number to denote each item. This is merely the word I chose for this -
it’s recommended you choose descriptive words for variables - using plurals for lists, and
singular for each item makes sense. It makes it easier to understand when reading.

Other data types are iterable, for example the string:

"""

This is a very simple Python program that prints "Hello".

That's all it does.

"""

print("Hello")

Lists

numbers = [1, 2, 3]

Iteration

numbers = [1, 2, 3]

for number in numbers:

 print(number)

1

2

3

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 26/37

This loops over each character and prints them out:

The integer data type is not iterable and trying to iterate over it will produce an error. For
example:

will produce:

However you can make an iterable object using the range function:

dog_name = "BINGO"

for char in dog_name:

 print(char)

B

I

N

G

O

Range

for i in 3:

 print(i)

TypeError: 'int' object is not iterable

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 27/37

range(5) contains the numbers 0, 1, 2, 3 and 4 (five numbers in total). To get the numbers 1
to 5 (inclusive) use range(1, 6).

You can use functions like len to find the length of a string or a list:

You can use if statements for control flow:

To create a Python file in Thonny, click File > New and you’ll be given a window. This is an
empty file, not a Python prompt. You write a Python file in this window, save it, then run it
and you’ll see the output in the other window.

For example, in the new window, type:

for i in range(3):

 print(i)

Length

name = "Jamie"

print(len(name)) # 5

names = ["Bob", "Jane", "James", "Alice"]

print(len(names)) # 4

If statements

name = "Joe"

if len(name) > 3:

 print("Nice name,")

 print(name)

else:

 print("That's a short name,")

 print(name)

Python files in Thonny

n = 0

for i in range(1, 101):

 n += i

print("The sum of the numbers 1 to 100 is:")

print(n)

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 28/37

Then save this file (File > Save or Ctrl + S) and run (Run > Run Module or hit F5) and
you’ll see the output in your original Python window.

You can write a Python file in a standard editor, and run it as a Python script from the
command line. Just navigate to the directory the file is saved in (use cd and ls for
guidance) and run with python3, e.g. python3 hello.py.

The standard built-in Python shell is accessed by typing python3 in the terminal.

This shell is a prompt ready for Python commands to be entered. You can use this in the
same way as Thonny, but it does not have syntax highlighting or autocompletion. You can
look back on the history of the commands you’ve entered in the REPL by using the Up/Down
keys. Use Ctrl + D to exit.

IPython is an interactive Python shell with syntax highlighting, autocompletion, pretty
printing, built-in documentation, and more. IPython is not installed by default. Install with:

Then run with ipython from the command line. It works like the standard python3, but has
more features. Try typing len? and hitting Enter. You’re shown information including the
docstring for the len function:

Using the Command Line

Other Ways of Using Python

IPython

sudo pip3 install ipython

Type: builtin_function_or_method

String Form:<built-in function len>

Namespace: Python builtin

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 29/37

Try the following dictionary comprehension:

This will pretty print the following:

In the standard Python shell, this would have printed on one line:

You can look back on the history of the commands you’ve entered in the REPL by using the
Up/Down keys like in python. The history also persists to the next session, so you can exit
ipython and return (or switch between v2/3) and the history remains. Use Ctrl + D to exit.

Docstring:

len(object) -> integer

Return the number of items of a sequence or mapping.

{i: i ** 3 for i in range(12)}

{0: 0,

 1: 1,

 2: 8,

 3: 27,

 4: 64,

 5: 125,

 6: 216,

 7: 343,

 8: 512,

 9: 729,

 10: 1000,

 11: 1331}

{0: 0, 1: 1, 2: 8, 3: 27, 4: 64, 5: 125, 6: 216, 7: 343, 8: 512, 9: 729, 10: 10
00, 11: 1331}

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 30/37

Some Python packages can be found in the Raspberry Pi OS archives, and can be installed
using apt, for example:

This is a preferable method of installing, as it means that the modules you install can be
kept up to date easily with the usual sudo apt update and sudo apt full-upgrade
commands.

Not all Python packages are available in the Raspberry Pi OS archives, and those that are
can sometimes be out of date. If you can’t find a suitable version in the Raspberry Pi OS
archives, you can install packages from the Python Package Index (known as PyPI).

To do so, install pip:

Then install Python packages (e.g. simplejson) with pip3:

The official Python Package Index (PyPI) hosts files uploaded by package maintainers.
Some packages require compilation (compiling C/C++ or similar code) in order to install
them, which can be a time-consuming task, particlarly on the single-core Raspberry Pi 1 or
Raspberry Pi Zero.

piwheels is a service providing pre-compiled packages (called Python wheels) ready for
use on the Raspberry Pi. Raspberry Pi OS is pre-configured to use piwheels for pip. Read
more about the piwheels project at www.piwheels.org.

Installing Python Libraries

apt

sudo apt update

sudo apt install python-picamera

pip

sudo apt install python3-pip

sudo pip3 install simplejson

piwheels

http://pypi.python.org/
https://www.piwheels.org/

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 31/37

Edit this on GitHub

A powerful feature of the Raspberry Pi is the row of GPIO (general-purpose input/output)
pins along the top edge of the board. A 40-pin GPIO header is found on all current
Raspberry Pi boards (unpopulated on Raspberry Pi Zero, Raspberry Pi Zero W and
Raspberry Pi Zero 2 W). Prior to the Raspberry Pi 1 Model B+ (2014), boards comprised a
shorter 26-pin header.

Any of the GPIO pins can be designated (in software) as an input or output pin and used
for a wide range of purposes.

NOTE

GPIO and the 40-pin Header

https://github.com/raspberrypi/documentation/blob/develop/documentation/asciidoc/computers/os/using-gpio.adoc

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 32/37

The numbering of the GPIO pins is not in numerical order; GPIO pins 0 and 1 are
present on the board (physical pins 27 and 28) but are reserved for advanced use (see
below).

Two 5V pins and two 3.3V pins are present on the board, as well as a number of ground
pins (0V), which are unconfigurable. The remaining pins are all general purpose 3.3V pins,
meaning outputs are set to 3.3V and inputs are 3.3V-tolerant.

A GPIO pin designated as an output pin can be set to high (3.3V) or low (0V).

A GPIO pin designated as an input pin can be read as high (3.3V) or low (0V). This is made
easier with the use of internal pull-up or pull-down resistors. Pins GPIO2 and GPIO3 have
fixed pull-up resistors, but for other pins this can be configured in software.

As well as simple input and output devices, the GPIO pins can be used with a variety of
alternative functions, some are available on all pins, others on specific pins.

PWM (pulse-width modulation)

Software PWM available on all pins

Hardware PWM available on GPIO12, GPIO13, GPIO18, GPIO19

SPI

SPI0: MOSI (GPIO10); MISO (GPIO9); SCLK (GPIO11); CE0 (GPIO8), CE1
(GPIO7)

SPI1: MOSI (GPIO20); MISO (GPIO19); SCLK (GPIO21); CE0 (GPIO18); CE1
(GPIO17); CE2 (GPIO16)

I2C

Data: (GPIO2); Clock (GPIO3)

Voltages

Outputs

Inputs

More

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 33/37

EEPROM Data: (GPIO0); EEPROM Clock (GPIO1)

Serial

TX (GPIO14); RX (GPIO15)

A handy reference can be accessed on the Raspberry Pi by opening a terminal window and
running the command pinout. This tool is provided by the GPIO Zero Python library, which
is installed by default on the Raspberry Pi OS desktop image, but not on Raspberry Pi OS
Lite.

GPIO pinout

https://gpiozero.readthedocs.io/

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 34/37

For more details on the advanced capabilities of the GPIO pins see gadgetoid’s interactive
pinout diagram.

WARNING

http://pinout.xyz/

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 35/37

While connecting up simple components to the GPIO pins is perfectly safe, it’s
important to be careful how you wire things up. LEDs should have resistors to limit the
current passing through them. Do not use 5V for 3.3V components. Do not connect
motors directly to the GPIO pins, instead use an H-bridge circuit or a motor controller
board.

In order to use the GPIO ports your user must be a member of the gpio group. The pi user
is a member by default, other users need to be added manually.

Using the GPIO Zero library makes it easy to get started with controlling GPIO devices with
Python. The library is comprehensively documented at gpiozero.readthedocs.io.

To control an LED connected to GPIO17, you can use this code:

Run this in an IDE like Thonny, and the LED will blink on and off repeatedly.

LED methods include on(), off(), toggle(), and blink().

To read the state of a button connected to GPIO2, you can use this code:

Permissions

sudo usermod -a -G gpio <username>

GPIO in Python

LED

from gpiozero import LED

from time import sleep

led = LED(17)

while True:

 led.on()

 sleep(1)

 led.off()

 sleep(1)

Button

https://projects.raspberrypi.org/en/projects/physical-computing/14
https://gpiozero.readthedocs.io/
https://gpiozero.readthedocs.io/

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 36/37

Button functionality includes the properties is_pressed and is_held; callbacks
when_pressed, when_released, and when_held; and methods wait_for_press() and
wait_for_release.

To connect the LED and button together, you can use this code:

Alternatively:

or:

from gpiozero import Button

from time import sleep

button = Button(2)

while True:

 if button.is_pressed:

 print("Pressed")

 else:

 print("Released")

 sleep(1)

Button + LED

from gpiozero import LED, Button

led = LED(17)

button = Button(2)

while True:

 if button.is_pressed:

 led.on()

 else:

 led.off()

from gpiozero import LED, Button

led = LED(17)

button = Button(2)

while True:

 button.wait_for_press()

 led.on()

 button.wait_for_release()

 led.off()

from gpiozero import LED, Button

led = LED(17)

button = Button(2)

9/15/22, 10:21 AM Raspberry Pi Documentation - Raspberry Pi OS

https://www.raspberrypi.com/documentation/computers/os.html#gpio-and-the-40-pin-header 37/37

Raspberry Pi documentation is copyright © 2012-2022 Raspberry Pi Ltd and is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International (CC BY-SA) licence.
Some content originates from the eLinux wiki, and is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported
licence.

button.when_pressed = led.on

button.when_released = led.off

https://creativecommons.org/licenses/by-sa/4.0/
http://elinux.org/
http://creativecommons.org/licenses/by-sa/3.0/

