
Python Programming for Beginners

Introduction

I want to thank you and congratulate you for downloading the

book, “Python Programming for Beginners".

This book contains the steps, strategies, and information you

need to learn the fundamentals of Python Programming

rapidly and effortlessly. It provides a solid foundation for

self-learners who are learning programming for the first time

and an excellent resource material for experienced

programmers who want to expand their horizon and tap the

powerful features of Python.

Python Programming for Beginners explores the nature and

features of Python as a programming language. It offers a

step-by-step guide to help you understand and master its

syntax, commands, data types, functions, and its many useful

modules.

It uses a practical and straightforward approach that will

appeal to most users who have less time to digest technical

jargons and fluff. It provides relevant examples that are

specifically created to make learning Python an enjoyable and

worthwhile experience.

Thanks again for downloading this book, I hope you enjoy it!

Table of Contents

Chapter 1 Getting to Know Python

Chapter 2 Installing Python and Using IDLE

Chapter 3 Files and Directories

Chapter 4 Python Syntax

Chapter 5 Variables

Chapter 6 Data Types

Chapter 7 Operators

Chapter 8 Functions and Modules

Chapter 9 Decision Making

Chapter 10 Flow Control

Chapter 1

Getting to Know Python

Python is a general purpose programming language that is

powerful and versatile. It supports several programming

paradigms such as object-oriented, aspect-oriented, functional,

and structured.

It is an interpreted language. It converts human codes into

machine-readable byte codes before it can execute them.

Python was developed by Guido van Rossum in the late 1980s.

He derived much of its syntax from ABC and C programming

languages.

It is one of the most widely used programming languages for

beginners. It implements simple syntax rules that make

Python programs appear like blocks of regular English

expressions. It is a high level programming language that is

quick and easy to learn and master.

Python is built with extensive libraries that enable

programmers to create large, practical, and meaningful

programs in a short span of time.

Learning Python can give you a solid foundation for a

rewarding programming career.

Chapter 2

Installing Python and Using IDLE

How to Install Python

Python is an open source language that is free to use and

distribute for both personal and commercial use. Python

Software Foundation is the administrator of Python and you

can download its installation files from its website.

How to Install Python in Windows

For Windows OS users, you can download the installation package

for your preferred version though this link:

https://www.python.org/downloads/

There are two main versions to choose from - the latest version of

Python 3, 3.5.2, and the latest version of Python 2, 2.7.12. You can

find older versions by scrolling down the page.

After downloading the package, just run the installation files by

clicking on its icon. You may choose to customize the installation by

specifying the location and features and deciding whether you want

the installation to be for the current user or for all users of the

computer. Otherwise, you can just install using default settings.

How to Install Python in Mac

Mac users can download Python’s installation package using

this link:

https://www.python.org/downloads/mac-osx/

How to Install Python in UNIX/Linux

https://www.python.org/downloads/
https://www.python.org/downloads/mac-osx/

UNIX or Linux users can download the installation package using

this link:

https://www.python.org/downloads/source/

You can install Python by clicking on the downloaded installation

file. An installation package includes IDLE, pip, and documentation.

Starting Python

There are at least two ways to start Python: though the command

line terminal or through IDLE. The command line features a basic

interface that will allow you to try out bits of codes and run your

program. IDLE, which stands for Integrated Development Learning

Environment, is an IDE which is created exclusively for Python.

Windows users can start the command line or IDLE by clicking on

the menu item or its icon on the Start menu. You may also access the

folder containing the installation files or a shortcut to the

installation files and click on the Python Interactive Shell (command

line) or IDLE.

Mac and GNU/Linux UNIX users will have to run the Terminal Tool

and enter Python to start a session.

Using IDLE

IDLE provides standard graphical user interface with many

helpful features that make writing Python programs intuitive

and efficient. It is a flexible platform that you can use on either

script mode or interactive mode.

When used in the interactive mode, Python evaluates each

expression entered as it simultaneously executes previous

expressions stored in active memory. It provides instant

https://www.python.org/downloads/source/

feedback after reading the last expression entered. This mode

is typically used to test program segments. It is quite useful for

learning Python’s syntax.

When used in the script mode, also called the standard mode,

the interpreter runs Python scripts or files saved with a .py

extension.

IDLE features the Python Shell, multiple window text editor,

smart indentation, auto-completion, syntax highlighting, and

an integrated debugger.

The Python Shell

The Python Shell uses a drop down menu with many useful

features. You will use the prompt on the Shell to work

interactively with Python by simply entering an expression.

Unlike the basic command line, you can copy-paste

expressions on previous rows and use them on the current

row.

The Python Shell has the following options on its main menu:

File

Edit

Shell

Debug

Options

Windows

Help

The File Menu

The File menu lets you create a new file, open a saved file or

module, save a new file or copy, save a file under a different

name, search for and open a class, browse sys.path, close

current file, print and save the present window, and exit

Python Shell.

Clicking on the ‘New File’ under the File menu opens a built-in

text editor with almost the same menu as the Python Shell.

You will use this text editor to write and save your program or

modules, check and run them, and display the output on the

Python Shell. The menu options for the text editor are File,

Edit, Format, Run, Options, Windows, and Help.

Writing and Running a Python Program

To write a program, you can use the integrated text editor or

other text editors. Programs written and saved in the built-in

text editor automatically takes a .py extension while those

written in other platforms should be saved with a .py

extension.

Using the Integrated Text Editor

To access the built-in text editor on Python Shell, you have to

click on File and choose New File.

Next, you can write a simple program that will print a string:

print(΄Python Programming is Fun!΄)

When you’re done, you need to save the file. You can save it in

the current working directory or in any folder of your choice

To save: Click on File, choose Save

The Save option opens a Save as dialogue box that will let you

name the file and the destination folder. Save the file as

MyFirstProgram on the default folder.

Running the Program

To run your program, click on the Run module option on the

text editor’s Run Menu. If there are no errors, you should see

the following on Python Shell:

=======RESTART: C: /Python/MyFirstProgram.py

=======

Python Programming is Fun!

Chapter 3

Files and Directories

Python manages files and directories through its os module.

The os module contains several useful methods and functions

for creating, modifying, or removing directories.

mkdir() method

The mkdir() method is used to create a new directory. It takes

one argument, the new directory name.

syntax:

os.mkdir("new_dir")

For example, to create a new directory named ‘new’ on drive c:

import os

os.mkdir('c:\\specialprogs')

chdir() method

The chdir() method is used when you need to work on a file

which is stored in another directory. It takes one argument:

the name of the directory that you want to use.

syntax:

os.chdir('new_dir')

For example, if you are currently working on a file stored in the

folder C:/Programs/Python/Apps and you want to use a file

stored in the folder c:/New, you will change the working

directory with the following statements:

import os

os.chdir("c:\\New")

getcwd()

The current working directory is the folder stored in the active

memory of Python. When you enter expressions such as

‘import file.txt’, Python locates the file in the current working

directory. The getcwd() method is used to obtain the current

working directory.

syntax:

os.getcwd()

Example:

import os

os.getcwd()

'C:\\New'

rmdir()

The rmdir() method is used to remove a folder. It takes one

argument: the name of the folder to be deleted. A folder must

first be emptied of files before it can be deleted.

syntax:

os.rmdir('dir_name')

Example:

import os

os.rmdir('c:\\New')

Chapter 4

Python Syntax

Programming syntax refers to the set of rules that define how

programs should be written and how they are to be

interpreted.

Keywords

Keywords are reserved words that Python uses for its processes

and built-in functions. To avoid programming errors, the

following keywords should not be used as an identifier when

naming Python objects:

class for continue

True False None

finally try lambda

return from is

global while def

and not del

nonlocal as with

elif or if

except break yield

import raise else

pass in assert

Identifiers

An identifier is a name given to Python objects such as

variables, classes, modules, and functions. You should take

note of the following rules and conventions when naming

objects:

An identifier can be a combination of uppercase and lowercase

letters, an underscore, or digit. It should not start with a digit.

An identifier should not contain a special character such as &,

%, #, or $.

You can use underscores to connect multiple-word identifiers.

Python is case-sensitive.

Examples of Valid Identifiers:

Variable_1, employees, my_grading_sheet, CamelCaseName

Examples of Invalid identifiers:

6variable, key@

Quotation Marks

A pair of single (΄), double ("), or triple (''') quotation marks

are used to indicate string literals in Python.

Examples:

΄Name΄, "Beatriz", '''Branch: ''', ΄Enter a number: ΄

Statements

Statements are expressions written inside a program which are

read, ignored, or run by the interpreter. Python supports

statements such as if, for, while, break, continue, pass, and

assignment statements.

Multiple-line statements

A multiple-line statement is a single statement that spans

several lines. You can indicate implicitly that a multi-line

statement is a single statement by wrapping the lines inside

parentheses (), square brackets [] or curly braces {}.

Example:

>>> alphabet = ('a', 'b', 'c', 'd', 'e', 'f', 'g'

 'h', 'i', 'j', 'k', 'l', 'm', 'n'

 'o', 'p', 'q', 'r', 's', 't', 'u'

 'v', 'w', 'x', 'y', 'z')

To explicitly indicate continuity, you can use a backslash at the

end of each line:

>>> letters = ["a", "b", "c", "d", "e", "f", "g", \

 "h", "i", "j", "k", "l", "m", "n", \

 "o", "p", "q", "r", "s", "t"]

Indentation

Python strictly implements indentation to structure its

programs. All statements in a block of code start from the

same point going to the right. A nested code is indicated by a

deeper indentation. By convention, programmers apply 4

white spaces instead of tabs.

Comments

Programmers typically write comments inside the program to

describe a process or provide important information.

Comments enhance program documentation. In Python, a

hash # symbol is used before a comment to tell the interpreter

to ignore the line.

Example:

#This program computes for weekly salary.

A comment can span over several lines. To wrap them

together, you can use a # symbol at the beginning of each line.

Example:

#This is a long

#comment that spans

#over several lines

You can also wrap multi-line comments with a pair of triple

quotes (""").

Example:

"""This is a long

comment that spans

over several lines"""

Docstring

A documentation string or docstring is used to describe and

document what a function or a class does. It is written at the

top of a block of code that defines or names a function, class,

or module. A docstring is typically written as a phrase that

starts in an uppercase and ends with a period. It is commonly a

one-line statement that is written in an imperative form and is

enclosed by a pair of triple quotes (""").

Examples:

def triple_value(num):

 """Function to get thrice the value of a number."""

 return 3*num

Chapter 5

 Variables

Variables

A variable is a reserved memory location that is used to store

and access value. It is given a unique name to identify its

location and to allow users to access the stored data.

Compared to most computer languages, creating a variable is

more flexible and straightforward in Python. You can easily

declare and reassign a variable with an assignment operator

(=). There is no syntax requirement for declaring the data type

because the interpreter intuitively identifies the data type of

the value assigned.

Examples of variable assignment statements:

employee = "John Snorkel"

number = 30

average = 90.5

remark = "Needs improvement."

The left operand is the identifier for the variable while the right

operand is the value assigned to each variable. The assignment

operator indicates that a variable is set to a particular value.

Python allows several assignments in one statement. In such

cases, the values are assigned according to their positional

order.

Example:

x, y, z = 15, 14, "normal"

Likewise, Python allows you to you assign one value to several

variables in one assignment statement.

Example:

x = y = z = 32

The statement assigns the integer 32 to variables a, b, and c

simultaneously. You can use the id() operator to verify if all

variables refer to the same memory location.

>>> id(x)

1636784896

>>> id(y)

1636784896

>>> id(z)

1636784896

Reassigning a variable is as easy as using the variable name in

another assignment statement.

For example, if you want to reassign variable x above to the

string ‘land forms’, you can make another assignment

statement:

>>> x = 'land forms'

To check out its new memory location:

>>> id(x)

59030768

Chapter 6

Data Types

Programming involves working with different types of data or

objects. These data may be built-in, defined by users, or

imported from internal and external modules or libraries.

Python supports the following basic data types:

● numbers

● string

● list

● tuple

● dictionary

Numbers

There are three numeric data types in Python 3:

integers

floating point numbers or floats

complex numbers

Integers

An integer is a whole number that has no decimal point or

fractional part. It can have unlimited size in Python 3 and

includes zero, positive, or negative numbers.

Normal integers

Examples: 25, 0, -40, 98746532581717

Binary literal (base 2)

A binary literal is prefixed by zero (0) and an uppercase B or

lowercase b:

Example:

>>> 0b0010

2

Octal literal (base 8)

An octal literal is introduced by zero (0) and uppercase O or

lowercase o.

Examples:

>>> 0O20

16

>>> 0o20

16

>>> oct_lit = 0O20

>>> print(oct_lit)

16

Hexadecimal literal (base 16)

A hexadecimal literal is prefixed by zero (0) and an uppercase

X or lowercase x.

Examples:

>>> 0xa0f

2575

>>> 0XA0F

2575

Converting Integers to String

The built-in functions bin(), oct(), and hex() are used to

convert an integer to its literal representation.

For example, to convert the integer 25 to its binary, octal, and

hexadecimal literals:

integer to binary literal:

>>> bin(25)

'0b11001'

integer to octal literal:

>>> oct(25)

'0o31'

integer to hexadecimal literal

>>> hex(25)

'0x19'

Floating-Point Numbers

A floating point number or float is a real number with a

decimal point and fractional part.

Examples: 50.75, 10.5, 76864800976.25

Complex Number

A complex number is a pair of a real and an imaginary

number. It takes the form ‘a+bj’ or ‘a+bJ’ where ‘a’ and ‘b’ are

floats and ‘J’ or ‘j’ is an imaginary number which signifies the

square root of -1.

Example:

>>> a = 5 + 4j

>>> b = 2 - 3j

>>> ab = a + b

>>> print(ab)

(7+1j)

Converting One Numeric Type to Another

Syntax may sometimes require the explicit conversion of a

number to another. You can compel Python to make the

conversion with the appropriate keyword.

Examples:

Integer to a float:

>>> float(15)

15.0

Integer to a complex number:

>>> complex(5)

(5+0j)

A pair of numbers to a complex number:

>>> complex(3,2)

(3+2j)

A float to an integer:

>>>int(12.25)

12

A float to a complex number:

>>> complex(15.5)

(15.5+0j)

String

A string is an ordered series of Unicode characters. It is an

immutable data type that may consist of letters, numbers,

symbols, or their combination. Strings are enclosed in a pair of

single or double quotation marks.

Examples of string assignments:

>>> company = 'Starbright Agency'

>>> job = 'programmer'

>>> name = 'Murphy James'

A string enclosed in a single quote may sometimes have to use

a single quotation mark within the string. To avoid syntax

error, you must escape the single quote within the string with a

backlash symbol (\). The same rule applies when you need to

use double quotation marks within a string enclosed in a pair

of double quotes.

Examples:

>>> conclusion = 'I can\'t recommend the brand.'

>>>print(conclusion)

I can’t recommend the brand.

>>> comment = "She answered without hesitation: \"I'm

going to resign if my father is proven guilty by an independent

court.\""

>>> print(comment)

She answered without hesitation: "I'm going to resign if my

father is proven guilty by an independent court."

How to Access Strings

Indexing

The index operator [] can be used to access strings and their

substrings. In Python, the first substring or character has zero

as index and the rest of the numbers going to the right are

indexed sequentially.

For example, if you set a variable ‘place’ to the string ‘hospital’,

here’s how you will access specific substrings:

>>> place = 'hospital'

>>> place[0]

'h'

>>> place[3]

'p'

>>> place[7]

'l'

Python likewise supports negative indexing which you can use

to access the last substring.

For example, to access the last character in the above string:

>>> place[-1]

'l'

The built-in len() function is another way to access the last

substring. This function is used to obtain the size of the string,

that is, the number of characters in a string. To use the len()

function to find the last substring, you will have to subtract 1

from its value.

syntax: string[len(string)-1]

Applying this syntax to the above example:

>>> place[len(place)-1]

'l'

Slicing Strings

The slicing operator [:] is used to instruct the interpreter to

return a substring from a given string. It takes a maximum of

two indices – the first one to indicate the initial substring and

the last one to indicate the index of the string to be excluded

from the desired substring.

To illustrate, create a new string:

>>> my_string = "requirements"

To access the 5​th​ to the 7​th​ substring on indices 4 to 6:

>>> my_string[4:7]

'ire'

To access the 8​th​ to the 10​th​ substring on indices 7 to 9:

>>> my_string[7:10]

'men'

If your desired substring starts from the initial substring, you

may choose to drop the first index. Hence:

>>> my_string[:7]

'require'

If you want to access a substring that ends with the last

substring, you can choose to omit the last index:

>>> my_string[7:]

'ments'

If you omit both the initial and final index, Python will return

the whole string:

>>> my_string[:]

'requirements'

Likewise, you can use the slicing operator with the + operator

to concatenate substrings:

>>> my_string[0:2] + my_string[9:]

'rents'

How to Concatenate Strings

You can combine two or more strings into a single string with

the + operator.

For example:

>>> a = 'islands'

>>> b = 'beaches'

>>> 'Exotic ' + a + ' and ' + b + ' are popular vacation

destinations.'

'Exotic islands and beaches are popular vacation destinations.'

How to Repeat a String

A string or its concatenation may be repeated using the *

operator and a number that will indicate the number of times

it will be repeated.

For instance, to repeat the string (*_*) three times:

>>> '(*_*)'*3

'(*_*)(*_*)(*_*)'

Using the upper() method and lower() method on

Strings

The upper() method is used to display a string in uppercase

while the lower() method is used to display a string in

lowercase().

To illustrate, create a variable ‘string_1’ to hold the string

‘Pacific’:

>>> string_1 = 'Pacific'

To return string_1 in uppercase:

>>> print(string_1.upper())

PACIFIC

This time, display string_1 in lowercase:

>>> print(string_1.lower())

pacific

You have learned to slice, concatenate, and display strings in

uppercase or lowercase. Take note that these operations do not

affect the string stored in a variable because, as mentioned,

strings are immutable. For example, if you print string_1 at

this point:

>>> print(string_1)

Pacific

List

A list is a mutable sequence data type that can hold any

number and types of data. Since it is mutable, you can add,

edit, sort, or delete any of its elements.

A Python list is distinguished by surrounding square brackets

[].

To create an empty list:

my_list = []

To build a list with elements, you will use a comma to separate

each item:

my_list = [item_01, item_02, item_03]

Examples of list creation expressions:

food_list = ["French toast", "chicken dumpling", "corn

muffins", "pizza"]

num_list = [3, 2, 9, 1, 7, 5]

mixed = ["craps", 65.5, 3]

nested_list = ["poker", 1, 2.75, [9, 7, 5, 1, 3, 4.5]]

Accessing List Elements

There are several ways to access Python’s list items:

Indexing

The index operator [] is used to access items on a list as in

other sequence data types like strings and tuples. The first

element takes the zero index. Attempting to access an index

that is beyond the list’s index range will return an IndexError.

Examples:

>>>sports = ["baseball", "basketball", "hockey", "soccer",

"rugby", "tennis"]

To access the indices 1, 3, and 5:

>>> sports[1]

'basketball'

>>> sports[3]

'soccer'

>>> sports[5]

'tennis'

>>> sports[-1]

'tennis'

If you try to access a non-existent index on the sports list,

Python will return an IndexError:

>>> sports[8]

Traceback (most recent call last):

 File "<pyshell#15>", line 1, in <module>

 sports[8]

IndexError: list index out of range

To access a nested list, you will use nested indexing:

Example:

>>> a_list = ["baseball", 12, 8.5, [3, 6, 1, 9, 12]]

>>> a_list[2]

8.5

>>> a_list[3]

[3, 6, 1, 9, 12]

>>> a_list[3][2]

1

>>> a_list[3][-1]

12

Slicing Lists

The slicing operator [:] is used to access a range of elements on

a list.

For example, create a new list with the following elements:

>>> list_1 = ['chameleons', 'lizard', 'snake', 'dinosaur', 'turtle']

To access the 2​nd​
 (index 1) and 3​rd ​

(index 2) element on list_1:

>>> list_1[1:3]

['lizard', 'snake']

To access the 1​st​
, 2​nd​

, and 3​rd​
 element on the list:

>>> list_1[:3]

['chameleons', 'lizard', 'snake']

To access the 2​nd​
 up to the last element:

>>> list_1[1:]

['lizard', 'snake', 'dinosaur', 'turtle']

Adding Elements to a List

The append() or extend() methods are used to add elements to

an existing list. The append() method is used when you want to

add one element. The extend() method is used to add several

elements.

syntax:

list.append(x)

list.extend([])

To illustrate, create a list of even numbers:

>>> even_num = [4, 6, 10, 16, 24, 34]

Add another even number, 46, to even_num list using the

append method:

>>> even_num.append(46)

To view the updated list:

>>> print(even_num)

[4, 6, 10, 16, 24, 34, 46]

Using the extend() method, add a list of even numbers to

even_num:

>>> even_num.extend([48, 50, 52, 54])

To view the updated list:

>>> print(even_num)

[4, 6, 10, 16, 24, 34, 46, 48, 50, 52, 54]

Changing List Elements

The elements of a list can be modified using the indexing []

and assignment (=) operators.

For example, to change the first element of the even_num list

from 4 to 2:

>>> even_num[0]= 2

To display the updated even_num list:

>>> print(even_num)

[2, 6, 10, 16, 24, 34, 46, 48, 50, 52, 54]

To replace several elements on the list, you can specify an

index range and provide a list of the new elements.

For example, to replace numbers 34, 46, and 48 on the list:

>>> even_num[5:8] = [26, 28, 30]

To view the updated list:

>>> even_num

[2, 6, 10, 16, 24, 26, 28, 30, 50, 52, 54]

Concatenating and Repeating Lists

Two combine two or more lists, you will use the + operator.

You may also use the * operator to indicate the number of

times that a list will be repeated.

To illustrate, create two lists:

>>> colors = ['yellow', 'blue', 'red', 'purple', 'pink']

>>> shapes = ['diamond', 'circle', 'heart', 'triangle', 'square']

Combine the lists colors and shapes under one list:

>>> kinder = colors + shapes

To view the combined lists:

>>> kinder

['yellow', 'blue', 'red', 'purple', 'pink', 'diamond', 'circle', 'heart',

'triangle', 'square']

To repeat the colors list thrice:

>>> colors * 3

['yellow', 'blue', 'red', 'purple', 'pink', 'yellow', 'blue', 'red',

'purple', 'pink', 'yellow', 'blue', 'red', 'purple', 'pink']

Inserting List Elements

The insert() method is used to insert an element on a specified

location within the list.

syntax:

list.insert(index, object)

Index refers to the intended index of the item to be inserted

while the object is the item to be inserted.

For example, create a list of integers:

>>> int_list = [1, 3, 4, 6, 7, 9]

To insert 2 on index 1:

>>> int_list.insert(1, 2)

To view the modified int_list:

>>> int_list

[1, 2, 3, 4, 6, 7, 9]

Removing or Deleting Items from a List

The remove() and pop() methods are used to remove a single

element on a list. The remove() method is used to remove a

named item while the pop() method is used to remove the item

at a given index.

Syntax for the remove() method:

list.remove(object)

For example, create a new list:

>>> fruits = ['grapes', 'orange', 'yellow', 'apple', 'pear',

'pineapple', 'banana', 'pomelo']

To remove the odd item from the list, namely, ‘yellow’ using

the remove() method:

>>> fruits.remove('yellow')

To display the updated fruits list:

>>> fruits

['grapes', 'orange', 'apple', 'pear', 'pineapple', 'banana',

'pomelo']

The pop() method is used to remove an item on a specified

index. When no argument is provided, the method removes the

last element on the list. In both cases, it returns the removed

item.

syntax:

list.pop()

For example, if you want to delete ‘pear’, the fourth item on the

list:

>>> fruits.pop(3)

'pear'

To view the updated fruits list:

>>> fruits

['grapes', 'orange', 'apple', 'pineapple', 'banana', 'pomelo']

To see what happens if you don’t specify an index:

>>> fruits.pop()

'pomelo'

The pop() method removed and returned the last item on the

list. Here’s the updated fruits list:

>>> fruits

['grapes', 'orange', 'apple', 'pineapple', 'banana']

You can use the clear() method to empty the fruits list in a

single statement:

>>> fruits.clear()

>>> fruits

[]

The del keyword can likewise be used to delete one or more

elements on a list.

syntax

del list[index]

To delete a range of elements:

del list[:]

To illustrate, create a list:

>>> my_list = ['peppermint', 'chamomile', 'lavender', 'lemon',

'cocoa', 'eucalyptus']

To delete the last item on the list:

>>> del my_list[-1]

To view the modified list:

>>> my_list

['peppermint', 'chamomile', 'lavender', 'lemon', 'cocoa']

To delete the elements on index 3 and up:

>>> del my_list[3:]

To view the remaining items on my_list:

>>> print(my_list)

['peppermint', 'chamomile', 'lavender']

Another way to remove one or more items on a list is by

assigning an empty list to their corresponding index range.

For example, to remove the 2​nd
and 3​rd

remaining items on

my_list;

>>> my_list[1:] = []

To view the remaining item on my_list:

>>> my_list

['peppermint']

Sorting List Elements

The sort() method is used to sort elements of similar data types

in an ascending order.

syntax:

list.sort()

For example, here’s a list of names:

>>> names = ['Matthew', 'Brad', 'Jack', 'Hugh', 'Arriane',

'Jane']

To sort the list elements:

>>> names.sort()

To view the sorted list:

>>> names

['Arriane', 'Brad', 'Hugh', 'Jack', 'Jane', 'Matthew']

The list is currently arranged in an ascending order. If you

want to sort the list and arrange them in descending order, you

may use the reverse() method.

syntax:

list.reverse()

For example, to sort the names list on reverse:

>>> names.reverse()

Here’s the updated names list:

>>> names

['Matthew', 'Jane', 'Jack', 'Hugh', 'Brad', 'Arriane']

The count() method

The count() method is used to return the number of list

elements that match a specified element.

Example:

>>> numbers = [2, 0, 1, 5, 7, 2, 3, 5, 9, 2, 8, 10]

>>> numbers.count(2)

3

>>> numbers.count(10)

1

>>> numbers.count(5)

2

Tuple

A tuple is an immutable sequence data type that can hold an

unlimited collection of different data types.

A tuple looks list a list except for its distinguishing round

brackets enclosure.

Examples of tuple assignment statements:

numbers = (8, 3, 1, 6, 0, 5, 4)

data = ("work experience", "a", "box")

mixed_tup = (8, 23.25, 0, "checks")

nested_tup = ("blue", (3, 9.5, "x"), [1, 7, 5])

empty_tup = ()

While a tuple typically consists of two or more elements,

Python allows the creation of a tuple with only one item. To

distinguish a one-item tuple from a string, a comma should

immediately follow the item.

For example:

land = ("valley",)

While a pair of square brackets is indispensable to a list, you

can create a tuple without the parentheses:

>>> odd = 5, 13, 1, 9, 3

Accessing Tuple Items

Python provides different ways to access a tuple.

Indexing

Accessing tuple items through indexing is similar to how you

access list items through indexing.

For example, create a new tuple:

>>> allied = ('nursing', 'dentistry', 'medicine', 'biology',

'veterinary')

To access different indices on the allied tuple:

>>> allied[0]

'nursing'

>>> allied[-1]

'veterinary'

>>> allied[1:4]

('dentistry', 'medicine', 'biology')

>>> allied[0:2]

('nursing', 'dentistry')

>>> allied[2:]

('medicine', 'biology', 'veterinary')

Slicing

Slicing can also be used to access a range of tuple elements.

For example, create a new tuple:

>>> buzzword = ('a', 'g', 'r', 'e', 'e', 'm', 'e', 'n', 't')

To access the item on index 5 and 6:

>>> buzzword[5:7]

('m', 'e')

To access the items on indices zero to the 4​th​:
>>> buzzword[:5]

('a', 'g', 'r', 'e', 'e')

To access the elements from the index 5 onwards:

>>> buzzword[5:]

('m', 'e', 'n', 't')

Modifying Tuples

A tuple is immutable and in general, you cannot modify its

elements. If it contains a mutable element, however, such as a

list, you can modify any item or items on that nested list.

For example:

>>> mixed = ('purple', 12, 20.5, [3, 2, 5, 7, 4])

To access the item on index 3, a nested list, and the item on the

index 2 of the nested list and replace it with the integer 10:

>>> mixed[3][2]= 10

To view the modified tuple:

>>> mixed

('purple', 12, 20.5, [3, 2, 10, 7, 4])

Reassigning Tuples

It is not always possible to modify tuple items. You can,

however, reassign a tuple with a different set of elements.

For example, you can reassign mixed with:

>>> mixed = ('apple pie', 'burger', 'meringue', 'upside down

cake')

To view the elements stored in view:

>>> mixed

('apple pie', 'burger', 'meringue', 'upside down cake')

Deleting Tuples

The del keyword can be used to delete a tuple.

syntax:

del tuple

To delete mixed tuple:

del mixed

Python Tuple Methods

There are only two methods that can be used with Python: the

count() and index() methods.

count()

The count() method returns the number of elements that

matches the given element.

syntax:

tuple.count()

Example:

>>> tup = ('r', 'e', 's', 'p', 'o', 'n', 's', 'i', 'b', 'l', 'e')

>>> tup.count('e')

2

>>> tup.count('s')

2

>>> tup.count('l')

1

index()

The use of the index() method on a tuple returns the index of

the first item that is equal to the given element.

syntax:

tuple.index(x)

For example, create a new tuple:

>>> a = ('a', 'r', 'r', 'a', 'n', 'g', 'e')

To get the index of the first occurrence of the letter ‘a’:

>>> a.index('a')

0

To obtain the index of the first occurrence of ‘r’:

>>> a.index('r')

1

To get the index of the first occurrence of ‘n’:

>>> a.index('n')

4

Dictionary

A dictionary contains an unordered pairs of keys and values

that are connected by a colon (:) and surrounded by curly

braces {}. Its key is an immutable data type which means that

it can only be a number, string, or tuple. Its value is mutable

and can be of any data type.

You can only access a value by accessing its key. A key can only

occur once in a dictionary.

Examples of dictionary creation statements:

my_dict = {}

sandra = {'Name':'Sandra Chavez', 'age':16, 'State':'Illinois'}

members = {'Name1':'Donna', 'Name2':'Maxene',

'Name3':'Rand'}

Accessing Dictionary Items

A dictionary is not an ordered pair. Hence, it is not indexed. To

access the data, you have to use the corresponding dictionary

key and provide it as an argument to the index[] operator or

the get() method.

For example, here is a dictionary:

 >>> Jen = {'Name':'Jen Rum', 'Telephone': 18869875674,

'Job':'Secretary'}

To access dictionary values one at a time, you will provide the

corresponding key inside the square brackets:

>>> Jen['Name']

'Jen Rum'

>>> Jen['Telephone']

18869875674

>>> Jen['Job']

'Secretary'

To obtain the values using the get() method:

>>> Jen.get('Name')

'Jen Rum'

>>> Jen.get('Telephone')

18869875674

>>> Jen.get('Job')

'Secretary'

Adding and Modifying Key-Value Pairs

You can add a new dictionary entry or modify an existing one

with an assignment statement:

mydict [key] = x

Whenever a new pair is assigned to a dictionary, Python

verifies whether a key is unique or a duplicate of an existing

key. If no similar key exists in the dictionary, the new

key-value pair is added. If a similar key exists, the existing

value is replaced by the new value.

For example, to add a new entry to the Jen dictionary:

>>> Jen['Age'] = 21

If you need to modify a value for an existing key, simply assign

a new value:

>>> Jen['Job'] = 'Cashier'

You can view the updated dictionary at this point:

>>> Jen

{'Age': 21, 'Job': 'Cashier', 'Telephone': 18869875674, 'Name':

'Jen Rum'}

Removing or Deleting Elements

The pop() method

The pop() method is used to remove a specific key-value pair

and return the deleted value.

For example, to delete the key ‘Age’ and its corresponding

value on the Jen dictionary:

>>> Jen.pop('Age')

21

Here’s the output if you try to print the Jen dictionary at this

point:

>>> print(Jen)

{'Job': 'Cashier', 'Telephone': 18869875674, 'Name': 'Jen

Rum'}

The popitem() method

The popitem() method removes and returns a random

key-value pair and takes no argument.

For example, if you use the popitem() method on the Jen

dictionary, it will return an arbitrary pair:

>>> Jen.popitem()

('Job', 'Cashier')

To see the remaining pairs of the dictionary:

>>> Jen

{'Telephone': 18869875674, 'Name': 'Jen Rum'}

The clear() method

The clear() method is used to remove all items in a dictionary.

To remove the remaining pairs in the Jen dictionary:

>>> Jen.clear()

At this point, you have an empty dictionary:

>>> Jen

{}

Deleting a dictionary with the del keyword

To delete the Jen dictionary completely, you will use the del

keyword:

>>>del Jen

Other Commonly Used Dictionary Methods

keys() returns a list of dictionary keys

syntax: dict.keys()

For example:

>>> hobbies = {'a':'painting', 'b':'archery', 'c':'golf',

'd':'paintball'}

To display the keys of the hobbies dictionary:

>>> hobbies.keys()

dict_keys(['a', 'b', 'd', 'c'])

values() returns a list of dictionary values

syntax: dict.values()

To display the values of the hobbies dictionary:

>>> hobbies.values()

dict_values(['painting', 'archery', 'paintball', 'golf'])

setdefault()

The setdefault() method searches for a specified key and

returns its value. If the key is non-existent, it returns the given

default value and adds it to the dictionary.

syntax:

dict.setdefault(key, default=None)

For example, to use setdefault() to search for a key in the

hobbies dictionary and provide a default value, quilting:

>>> hobbies.setdefault('c', 'quilting')

'golf'

The method returned ‘golf’, the value of ‘c’ and discarded the

default value given because the key exists in the dictionary.

To see how Python responds to the method when you specify a

non-existent key, use the setdefault() method again:

>>> hobbies.setdefault('e', 'quilting')

'quilting'

The method returned the value of ‘quilting’ which means that

it updated the dictionary with a new key-value pair. To view

the updated hobbies dictionary:

{'a': 'painting', 'b': 'archery', 'd': 'paintball', 'c': 'golf', 'e':

'quilting'}

update()

The update() method updates a current dictionary with pairs

from another dictionary. Take note that when there are

common keys between the two dictionaries, the other

dictionary’s value will overwrite that of the current dictionary.

For example, given are two dictionaries, the base_dict and the

other_dict:

>>> base_dict = {'animal':'chameleon', 'color':'green',

'habitat':'forest'}

>>> other_dict = {'animal':'chameleon', 'color':'brown',

'lifespan':'10 years'}

To update the base_dict with the items on other_dict:

>>> base_dict.update(other_dict)

To view the updated base_dict:

>>> base_dict

{'lifespan': '10 years', 'animal': 'chameleon', 'color': 'brown',

'habitat': 'forest'}

Notice that the key ‘lifespan’ and its corresponding value was

added to the base_dict. Likewise, the color was updated from

green to brown. Since only the base_dict was updated, the

method does not affect the other_dict at all.

To view the other_dict:

>>> other_dict

{'lifespan': '10 years', 'animal': 'chameleon', 'color': 'brown'}

copy()

The copy() method performs a shallow copy of a dictionary by

copying each key-value pair to a new dictionary.

For example, to make a copy of the other_dict above to a new

dictionary that will be named exotic_1:

>>> exotic_1 = other_dict.copy()

To view the new dictionary:

>>> exotic_1

{'animal': 'chameleon', 'lifespan': '10 years', 'color': 'brown'}

fromkeys()

The fromkeys() method takes items from a sequence-type data

such as a list and uses them as keys to build a new dictionary.

It takes a second argument which can be used to provide a

value that will be associated with the new dictionary keys.

For example, here is a list that can be used to obtain the keys

required to create a dictionary:

my_list = ['Title', 'Author', 'Publisher', 'Editor']

To build a new dictionary, ‘pub_dict’, from my_list using

fromkeys() specifying ‘Spiderman’ as the default value:

>>> pub_dict = dict.fromkeys(my_list, 'Spiderman')

Here’s the content of the new pub_dict dictionary:

>>> pub_dict

{'Author': 'Spiderman', 'Editor': 'Spiderman', 'Publisher':

'Spiderman', 'Title': 'Spiderman'}

Chapter 7

Operators

Operators are symbols or special characters that indicate the

execution of a specific process. You will use them to assign,

evaluate, verify, or perform tasks on variables or data.

Python supports the following operators:

Arithmetic operators

Assignment operators

Comparison or Relational Operators

Membership Operators

Logical Operators

Arithmetic Operators

Addition (+)

The addition operator adds the value of the left and right

operands.

>>>2+ 6

8

Subtraction (-)

The subtraction operator subtracts the value of the right

operand from the value of the left operand.

>>>22 – 7

15

Multiplication (*)

The multiplication operator multiplies the values of the left

and right operands.

>>>25 * 3

75

Division (/)

The division operator divides the value of the left operand with

the value of the right operand.

>>>60 / 15

4.0

Exponent (**)

The exponent operator raises the value of the first operand to

the number indicated by the second operand.

>>> 3**3

27

Modulos (%)

The modulos operator returns the remainder after dividing the

number on the left side of the operator by the number on the

right.

>>> 32 % 5

2

Floor Division (//)

The floor division operator divides the value of the left operand

by the value of the right operand and returns a quotient as a

whole number.

>>> 45//4

11

Assignment Operators

Assignment operators are used to assign values to variables.

= Assigns the value of the right operand to the left

operand:

>>> abc = 'Jack'

+= add and

Adds the values of the left and right operands and assigns the

sum to the left operand:

counter += 10

-= subtract and

Subtracts the value of the right operand from the value of the

left operand and assigns the difference to the left operand:

b -= 3

*= multiply and

Multiplies the values of both operands and assigns the product

to the left operand:

xyz *= 7

/= divide and

Divides the value of the left operand with the value of the right

operand and assigns the quotient to the left operand:

abc /= 3

**= exponent and

Performs exponential calculation on the left operand and

assigns the value to the left operand:

y **= 4

%= modulos and

Takes the modul0s between the left and right operands and

assigns the result to the left operand:

xyz %= 3

//= floor division and

Performs floor division of the operands and assigns the value

to the left operand

a //= 2

Relational Operators

Relational operators evaluate the values of the left and right

operands and return whether the indicated relation is true or

false.

Following are the relational or comparison operators:

== left operand is equal to the right operand

!= left operand is not equal to the right operand

> left operand is greater than the right operand

< left operand is less than the right operand

>= left operand is greater than or equal to right operand

<= left operand is less than or equal to right operand

Examples:

>>> xyz = 100

>>> abc = 75

>>> xyz == abc

False

Membership Operators

Membership operators check for the occurrence or

non-occurrence of a value in a sequence type data or of a key in

a dictionary.

in

The ‘in’ operator returns True if a specified value occurs in a

sequence or if a given key is found in a dictionary and returns

False if otherwise.

not in

The ‘not in’ operator returns True if a given value does not

occur in a sequence or if a specified key does not appear in

dictionary and returns False if otherwise.

Examples:

>>> my_list = [1, 4, 6, 8, 12, 24, 20, 'a', 'd', 'e']

>>> 20 in my_list

True

>>> 8 not in my_list

False

>>> member_1 = {'Name':'Martha Swan', 'Age':24,

'State':'Illinois'}

>>> 'Name' in member_1

True

>>> 'Height' in member_1

False

>>> 'Age' not in member_1

False

Logical Operators

There are three logical operators in Python:

and

or

not

Python applies the following rules when evaluating logical

expressions:

x and y The ‘and’ operator returns True if both

arguments are true. It returns False if one

argument is false.

x or y The ‘or’ operator returns True if at least one of

the arguments is True. It returns False if both

arguments are false.

not y The ‘not’ operator returns True if the argument is

false and False if the argument is true.

Examples:

>>> a = 5

>>> b = 3

>>> (a > 2) and (b < 12)

True

>>> (a < 2) or (b < 5)

True

>>> (a < 3) and (b == 2)

False

>>> not(a == 3)

True

>>> not(a == 5)

False

Chapter 8

Functions and Modules

Functions

A function is a statement or a group of related statements that

performs a specific task. Functions are reusable and they help

make programming more efficient.

In Python, a function is also an object. Hence, it can be

assigned to a variable or passed as an argument.

A function is either built-in or user-defined.

Built-in Functions

Python features the following built-in functions:

abs() all() ascii() any()

bin() bool() bytes() bytearray()

callable() chr() compile() classmethod()

complex() delattr() dir() dict()

divmod() enumerate() exec() eval()

filter() format() float() frozenset()

globals() getattr() hasattr() hash()

hex() help() __import__() id()

input() int() issubclass() isinstance()

iter() list() len() locals()

max() map() min() memoryview()

next() object() open() oct()

ord() print() pow() property()

repr() range() round() reversed()

set() slice() setattr() sorted()

str() sum() staticmethod() super()

type() tuple() vars() zip()

The following are the most commonly used built-in functions:

print()

The print() function prints value to the default output mode,

the screen.’

Examples:

>>> print("Python is fun!")

Python is fun!

input()

The input() function reads keyboard input and returns the

string.

This function takes an optional parameter, a prompt string,

which is displayed whenever the function is called. It returns

the user’s response as a string.

To illustrate, here is program that asks for user’s input:

a = input('Please enter your name: ')

print('Hi, ' + a + '!')

num = input('Please enter your student number: ')

print('Your name is ' + a + ' and your student number is ' +

num)

If you enter James as your name and the number 8765 as your

student number, here’ how the interaction would appear:

Please enter your name: ​James

Hi, James!

Please enter your student number: ​8675

Your name is James and your student number is 8675.

len()

This function returns the size or length of an object.

To get string size:

>>> a = 'pineapple'

>>> len(a)

9

>>> len('programming')

11

To get list size:

>>> items = ['sheep', 12, 'white', 'cup', 94.2]

>>> len(items)

5

To get dictionary size:

>>> animal_1 = {'name':'sheep', 'male':'ram', 'female':'ewe',

'young':'lamb'}

>>> len(animal_1)

4

max()

The max() function returns the largest item.

>>> my_num = [4, 12, 87.5, -150, 90, 24]

>>> max(my_num)

90

min()

The min() function returns the smallest item.

>>> my_num = [4, 12, 87.5, -150, 90, 24]

>>> min(my_num)

-150

abs()

The abs() function returns the absolute value of a number.

>>> abs(-5)

5

>>> x = 3

>>>abs(x)

3

round()

The round() function returns the rounded value of a floating

point number.

To round off to the nearest digit:

>>> round(56.9874560)

57

To round off to the nearest 2 decimal places:

>>> a = 87.23424

>>> round(a, 2)

87.23

type()

The type() function returns the object type of the argument.

>>> a = 'primary'

>>> type(a)

<class 'str'>

>>> b = ('p', 'r', 'i', 'm', 'a','r', 'y')

>>> type(b)

<class 'tuple'>

>>> c = [1, 3, 5, 7, 9, 'wall']

>>> type(c)

<class 'list'>

>>> d = {'a':1, 'b':2, 'c':3}

>>> type(d)

<class 'dict'>

range()

syntax: range(start, end, step)

The range() function is used to return an iterator or a list with

arithmetic progression. It takes a maximum of 3 integer

arguments to indicate the start, end, and progression of the

sequence. When only one argument is given, it is assigned to

the ‘end’ argument and the ‘start’ takes the default value of

zero while the ‘step’ or progression defaults to 1.

For example, to return a list from a given range:

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range(0, 40, 5))

[0, 5, 10, 15, 20, 25, 30, 35]

>>> new_list = list(range(2, 14, 2))

>>> print(new_list)

[2, 4, 6, 8, 10, 12]

list()

The list() function returns a list from a given sequence or

dictionary keys:

>>> a = 'Programs'

>>> new_list = list(a)

>>> print(new_list)

['P', 'r', 'o', 'g', 'r', 'a', 'm', 's']

>>> dict1 = {'color':'red', 'number':3, 'size':'small'}

>>> my_list = list(dict1)

>>> print(my_list)

['number', 'color', 'size']

dict()

The dict() function creates a new dictionary from tuple pairs.

First, you have to create a list of tuple pairs:

>>> pairs_list = [('shape', 'round'), ('size', 'medium'), ('color',

'blue')]

Use the dict() function to convert the list to a dictionary:

>>> my_dict = (dict(pairs_list))

Now, type my_dict to view the new dictionary:

>>> my_dict

{'size': 'medium', 'color': 'blue', 'shape': 'round'}

str()

The str() function is used to return a string from a non-string

value.

Example:

>>> name = 'Leila'

>>> age = 26

>>> print('Her name is ' + name + ' and she is ' +str(age) + '

years old.')

Her name is Leila and she is 26 years old.

The str() function explicitly converts the integer into a string

literal that can be used for printing. Python will raise a

TypeError if you attempt to print the variable ‘age’ without

explicit conversion:

>>> print('Her name is ' + name + ' and she is ' + age + ' years

old.')

Traceback (most recent call last):

 File "<pyshell#33>", line 1, in <module>

print('Her name is ' + name + ' and she is ' + age + ' years

old.')

TypeError: Can't convert 'int' object to str implicitly

User-Defined Functions

User-defined functions are functions created by programmers

to perform a specific task. They are created using Python’s def

keyword.

Syntax:

def function_name():

 function body

Programmers typically write a docstring at the top of a

function’s body. Docstrings provide information on what the

function does.

The function’s body may consist of one statement or a group of

statements which must use the same indentation to form a

block.

The parameters or arguments are used to pass values to a

function and are enclosed in parentheses. A function can take a

default or optional argument. A function with a default

argument will not require an argument when called. It will

return the default value when called without an argument.

To illustrate, here is a simple function:

def Greeter(name="Guest"):

 """ Greets users. """

 print("Welcome, " + name + "!")

The Greeter function provides an optional argument ‘Guest’

which will be printed if no argument is given. For example, call

the function on the Python prompt with a name argument,

‘Gail’ by typing Greeter(‘Gail’):

>>> Greeter('Gail')

Welcome, Gail!

Now, call the function without providing an argument by

simply typing Greeter on the prompt:

>>> Greeter()

Welcome, Guest!

Notice that calling the Greeter() function without specifying an

argument returned the default argument ‘Guest’.

Return Statement

A function may or may not return a value. A function may be

designed to return a value by including a return statement

within its body.

syntax:

return [expression]

Example:

def double(num):

 """Return the square of a number."""

 return num**2

When you call the function ‘double’ on the prompt, it will

return a value:

>>> double(3)

9

>>> double(4)

16

Functions with Two or More Arguments

A function can take more than one parameter and each can

have its own default argument. When you have a mix of default

and non-default arguments, you should always place the

non-default argument/s on the left of those with default

arguments.

To illustrate, here is a function with three arguments:

def Hello(name, title = 'my friend', message = 'Good Day'):

 """ Greets a person and prints a message"""

 print('Hello' , name + ', ' + title + '. ' + message + '!')

Hello('Jamille')

Hello('Jazz', 'my pet', 'Happy Birthday')

This time, the function was called within the program. In the

first call line, only one argument was supplied. In the second

call, all three arguments were supplied. If you run the

program, here’s what the output would be:

Hello Jamille, my friend. Good Day!

Hello Jazz, my pet. Happy Birthday!

Keyword Arguments

The values you supply on a function call are assigned by

default according to the position of the arguments. Hence,

when you gave the values ‘Jazz’, ‘my pet, and ‘Happy Birthday’,

these were all assigned to the name, title, and message

respectively. You can override the default positional

arrangement by using keyword arguments on function call.

A keyword argument is one that assigns a value to the

parameter name on function call.

For example, call the ‘Hello’ function on the prompt with the

following arguments:

>>> Hello(title='my sweetheart', name='Fleur',

message="Have fun")

Hello Fleur, my sweetheart. Have fun!

When you call a function with both positional and keyword

arguments, the positional argument/s should always precede

the keyword argument.

>>> Hello('Fleur', message='Have fun', title='my sweetie')

Hello Fleur, my sweetie. Have fun!

Arbitrary Arguments

A program may sometimes require calling a function with an

undetermined number of arguments. Python allows the use of

arbitrary arguments to facilitate this function.

For example, this function greets any number of people that

will be named on the function call:

def Greeter(*guests):

 """Greets all guests given in the guests tuple"""

 for x in guests:

 print("Hello", x)

When you call the function on the prompt by providing a tuple

of names as arguments:

>>> Greeter('Janice', 'Mike', 'Francis', 'Donna', 'Jon')

Here’s what Python will return:

Hello Janice

Hello Mike

Hello Francis

Hello Donna

Hello Jon

Functions Calling another Function

A function may also call another function.

Example:

#comp_sum calls the dept_sum function

def dept_sum(x):

 return x * 4

def comp_sum(a):

 return dept_sum(a) + 10

print(comp_sum(4))

print(comp_sum(2))

print(comp_sum(9))

Here’s the output when you run the program:

26 #4 * 4+ 10

18 #2 * 4 + 10

46 #9 * 4 + 10

Modules

A module is a file that contains statements, definitions, or

codes. Python has many built-in modules like math, random,

re, calendar, and os modules but you can also create your own

module. The use of modules helps make Python programming

more efficient by promoting code reusability within and across

programs and platforms.

For instance, you can create a module that will contain all

functions that you use frequently and simply import the

module and the corresponding function or attribute whenever

you need it in any of your programs.

To illustrate, create a module that will contain the definitions

of the functions double, adder, and multiplier. Save the

module as Formula.py:

def double(num):

 """Returns the square of a number."""

 return num**2

def adder(x, y):

 """Adds the values and returns the result."""

 xy = x + y

 return xy

def multiplier(x, y):

 """Multiplies the values and returns the result """

 xy = x * y

 return xy

After typing and saving, close the file to prepare it for further

processing.

Importing a Module

To be able to use the attributes and functions of a module, you

need to import the same to your program or on the prompt.

syntax:

import module

Hence, to import the module formula you created:

import Formula

The import statement places the Formula module in the active

memory of the interpreter. You can now make use of the

functions stored in the module by applying the dot operator:

>>> Formula.double(5)

25

>>> Formula.multiplier(6, 4)

24

>>> Formula.adder(10, 5)

15

Built-in Modules

Python has numerous built-in modules that you can import

and use in your programs.

Math Module

The math module is one of the most frequently used modules

in Python. By importing the math module, you will gain access

to its attributes, constants, and a great range of mathematical

functions.

To access its attributes and methods, you will use the dot

operator on math, specify the method, and provide the

parameter.

To illustrate, import the math module:

>>>import math

To view its contents, use the dir keyword on math:

>>>dir(math)

['__doc__', '__loader__', '__name__', '__package__',

'__spec__', 'acos', 'acosh', 'asin', 'asinh', 'atan', 'atan2', 'atanh',

'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp',

'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum',

'gamma', 'gcd', 'hypot', 'inf', 'isclose', 'isfinite', 'isinf', 'isnan',

'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf', 'nan', 'pi',

'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'trunc']

To use its methods and attributes:

>>> math.sqrt(25)

5.0

>>> math.gcd(5, 20)

5

>>> math.pi

3.141592653589793

>>> math.__doc__

'This module is always available. It provides access to

the\nmathematical functions defined by the C standard.'

The Random Module

The random module is commonly used when you want to

generate a random item within a specified range. This module

contains several methods that are commonly used in games

that require users to pick a random item.

To access the module, use the import keyword:

import random

The random module has several useful methods.

randint()

The randint() method takes two arguments and generates a

random number. The first argument is the lowest value while

the second argument is the highest value that can be returned.

Example:

>>> import random

To return any number from 1 to ten:

>>> print(random.randint(1, 10))

5

choice()

The choice() function generates a random value from a

specified sequence:

For example:

import random

items = ['Jackpot!','You lose!', 'Take two chances!', 'Go home!']

print(random.choice(items))

print(random.choice(items))

print(random.choice(items))

If you run the program, you might get the following output:

You lose!

Jackpot!

Go home!

shuffle

The shuffle() function sorts a list’s elements in random order.

syntax:

random.shuffle(list)

Example:

import random

num_list = [1, 2, 12, 15, 10, 9, 20]

random.shuffle(num_list)

print(num_list)

When you run the program, you might get this result:

[1, 15, 12, 20, 10, 9, 2]

randrange

The randrange() function generates a random element from a

specified range.

syntax:

random.randrange(start, stop[, step])

example:

import random

for num in range(4):

 print(random.randrange(0, 43, 3))

When run, the above code will generate 4 random numbers

divisible by 3 like the following combination:

12

42

9

27

Chapter 9

Decision Making

Decision making structures are commonly available in

computer languages. They facilitate the implementation of a

course of action based on the response to a test condition.

A decision making block starts with a Boolean expression and

branches out to another block indicated by either a True or

False response.

Python supports these decision making structures:

if statements

if else statements

if…elif…else statements

if statements

syntax:

if condition:

 block

Example:

num = int(input("Enter a number: "))

if num >= 10:

 print("Welcome! You belong to the Star Class.")

print("This program classifies members based on user's

response.")

If the user enters 12, the program prints the statement given

under the ‘if block’:

Enter a number: ​12

Welcome! You belong to the Star Class.

This program classifies members based on user's response.

If the user enters a number below 10, like 6, the program

proceeds to the next unindented line:

Enter a number: ​6

This program classifies members based on user's response.

if…else statements

In if…else structures, Python executes the ‘if block’ if the test

expression generates a True response. Otherwise, if the

response is False, it implements the ‘else block’.

syntax:

if test expression:

 if block

else:

 else block

Example:

#This program checks if an item is on stock and asks the buyer

to pay the indicated price.

items = {'stapler':10, 'paper':5, 'pen':2, 'pencil':2, 'marker':4}

x = input("Please enter your order: ")

if x in items:

 print("You ordered a/an " + x + " and it is on stock. Please

pay $" + str(items.get(x)) + '.')

else:

 print("Sorry, " + x + " is out of stock.")

If you run the program and responded with paper, maker, and

eraser, here are the program’s output:

Please enter your order: ​paper

You ordered a/an paper and it is on stock. Please pay $5.

Please enter your order: ​marker

You ordered a/an marker and it is on stock. Please pay $4.

Please enter your order: ​eraser

Sorry, eraser is out of stock.

if…elif…else statements

An if…elif…else structure allows the evaluation of multiple

expressions. If the ‘if condition’ yields True, it executes the ‘if

block’. If it yields False, it evaluates the ‘elif’ block. If the ‘elif’

test expression is True, it executes the ‘elif block’. Otherwise, it

executes the ‘else block’.

syntax:

if test expression:

 if block

elif test expression:

 elif block

else:

 else block

Example:

#This program checks if an item is on stock and asks buyer to

pay the indicated price if the item is available.

#If not on stock, it will check if the given item is on the

pending order list and prints a remark.

#If the order is neither on stock nor pending, the program

prints an appropriate remark.

items = {'stapler':10, 'paper':5, 'pen':2, 'pencil':2, 'marker':4}

pending = ['eraser', 'notebook', 'folder']

x = input("Please enter your order: ")

if x in items:

print("You ordered a/an " + x + " and it is on stock. Please

pay $" + str(items.get(x)) + '.')

elif x in pending:

print("You ordered a/an " + x + " and it will be delivered

tomorrow.")

else:

 print("Sorry, " + x + " is out of stock.")

If you run the program and responded with pen, notebook, and

clip, here’s what the output would be:

Please enter your order: ​pen

You ordered a/an pen and it is on stock. Please pay $2.

Please enter your order: ​notebook

You ordered a/an notebook and it will be delivered tomorrow.

Please enter your order: ​clip

Sorry, clip is out of stock.

Chapter 10

Flow Control

Loops are program control structures that allow intricate

execution paths and repetitive execution of a statement or a

block of code.

For loop

A ‘for loop’ is used to iterate over items of sequence data types

like strings, lists, or tuples.

syntax:

for val in sequence:

 statement(s)

On a ‘for loop’, the variable stores the value of each sequence

element with every iteration. The loop goes on until all

elements are processed.

Examples:

A ‘for loop’ over a string:

for letter in 'First Class':

 print('<**', letter, '**>')

Here’s the output when you run the loop:

<* F *>

<* i *>

<* r *>

<* s *>

<* t *>

<* *>

<* C *>

<* l *>

<* a *>

<* s *>

<* s *>

A ‘for loop’ over a list:

colors = ['yellow', 'blue', 'violet', 'brown', 'black', 'white']

for item in colors:

 print('A ' + item + ' backpack is cool!')

print('These backpacks are amazing!')

When you run the loop, here’s what you will get:

A yellow backpack is cool!

A blue backpack is cool!

A violet backpack is cool!

A brown backpack is cool!

A black backpack is cool!

A white backpack is cool!

These backpacks are amazing!

While Loop

The ‘while loop’ is used when you need to repeatedly execute a

statement or block of code while a test condition is True. When

it is no longer True, control passes to the next line after the

loop.

syntax:

while test condition

 statement(s)

Example:

#program adds number from 1 up to a

#user-provided number

#total = 1+2+3…+ given number

num = int(input("Enter a number: "))

#initialize total and counter

total = 0

counter = 1

while counter <= num:

 total = total + counter

 counter += 1

#print the total

print("The total is: ", total)

When you run the program and enter the numbers 3, 5, and 8:

Enter a number: ​3

The total is: 6

Enter a number: ​5

The total is: 15

Enter a number: ​8

The total is: 36

Break Statement

A break statement terminates the loop and passes control to

the next statement after the loop. It ends the iteration

regardless of the test expression and prevents the program

from running the ‘else’ statement.

Example:

#loop ends upon reaching a specified item

items = ['affordable', 'available', 'suitable', 'used', 'perfect fit']

for x in items:

 if x == 'used':

 break

 print('I love' ,x, 'clothes.')

print("It's Mega Sales season!")

Once the loop reaches ‘used’, it terminates and the program

runs the next unindented line.

I love affordable clothes.

I love available clothes.

I love suitable clothes.

It's Mega Sales season!

Continue Statement

The continue statement tells the program to continue to the

next iteration after reaching and skipping a given item in the

sequence.

For example, you can replace the break statement with the

continue statement in the above example:

items = ['affordable', 'available', 'suitable', 'used', 'perfect fit']

for x in items:

 if x == 'used':

 continue

 print('I love' ,x, 'clothes.')

print("It's Mega Sales season!")

The loop skips the iteration when it reaches ‘used’ and

proceeds to the next item on the list:

I love affordable clothes.

I love available clothes.

I love suitable clothes.

I love perfect fit clothes.

It's Mega Sales season!

Pass Statement

A pass is a null operation in Python. The interpreter reads the

statement and does nothing. It is commonly used as a

placeholder for a statement or block of statements.

Programmers use them to enable partial program testing.

syntax:

 pass

Example:

#pass statement in an ‘if’ structure:

if x in item:

 pass

Try and Except Statements

Python has built-in exceptions that cause a program to return

an error whenever it runs into a problem. Whenever an error

occurs, the process terminates and control is passed to the

calling process and to the process before it until it is handled.

Failure to manage the error causes a program to crash.

One of the ways to handle program errors and exceptions in

Python is with the ‘try and except’ structure. A critical program

segment is placed under the ‘try’ clause. The statement or

group of statements that will handle the error is provided

under the ‘except’ clause.

Example:

try:

 xyz = int(input("Please enter a number: "))

 print("You entered %d." % xyz)

except ValueError:

 print("You have entered an invalid character.")

Python will try to execute the group of statements under the

‘try’ clause. This is a critical part of the program as the

programmer anticipates that a figure other than a number will

be entered by a user and that this might lead to a ValueError.

Whenever the program runs into a ValueError, control passes

to the ‘except’ block which handles the error.

For example, if you run the above program using an integer

and a letter, you will get the following output:

Please enter a number: 6

You entered 6.

Please enter a number: a

You have entered an invalid character.

Conclusion

I hope that this book was able to help you to learn the

fundamentals of Python Programming and motivate you to

take a higher leap towards a programming career in Python.

The next step is to optimize your skills and take it to the next

level by creating your own programs or acquiring advance

programming skills through a professional course.

I wish you the best of luck!

