
5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 1/14

RIGCTL
NAME
SYNOPSIS
DESCRIPTION
OPTIONS
COMMANDS
READLINE
DIAGNOSTICS
EXIT STATUS
EXAMPLES
BUGS
COPYING
SEE ALSO
COLOPHON

NAME

rigctl - control radio transceivers and receivers

SYNOPSIS

rigctl [-hiIlLnouV] [-m id] [-r device] [-p device] [-d device] [-P type] [-D type] [-s baud] [-
c id] [-t char] [-C parm=val] [-v[-Z]] [command|-]

DESCRIPTION

Control radio transceivers and receivers. rigctl accepts commands from the command line as well
as in interactive mode if none are provided on the command line.

Keep in mind that Hamlib is BETA level software. While a lot of backend libraries lack complete
rig support, the basic functions are usually well supported.

Please report bugs and provide feedback at the e-mail address given in the BUGS section below.
Patches and code enhancements sent to the same address are welcome.

OPTIONS

This program follows the usual GNU command line syntax. Short options that take an argument
may have the value follow immediately or be separated by a space. Long options starting with two
dashes (’-’) require an ’=’ between the option and any argument.

Here is a summary of the supported options:
-m, --model=id

Select radio model number.

See model list (use “rigctl -l”).

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 2/14

Note: rigctl (or third party software using the C API) will use radio model 2 for NET
rigctl (communicating with rigctld).

-r, --rig-file=device
Use device as the file name of the port connected to the radio.

Often a serial port, but could be a USB to serial adapter. Typically /dev/ttyS0,
/dev/ttyS1, /dev/ttyUSB0, etc. on Linux, COM1, COM2, etc. on MS Windows. The BSD
flavors and Mac OS/X have their own designations. See your system’s documentation.

Can be a network address:port, e.g. 127.0.0.1:12345

The special string “uh-rig” may be given to enable micro-ham device support.
-p, --ptt-file=device

Use device as the file name of the Push-To-Talk device using a device file as described
above.

-d, --dcd-file=device
Use device as the file name of the Data Carrier Detect device using a device file as
described above.

-P, --ptt-type=type
Use type of Push-To-Talk device.

Supported types are ’RIG’ (CAT command), ’DTR’, ’RTS’, ’PARALLEL’, ’CM108’,
’GPIO’, ’GPION’, ’NONE’, overriding PTT type defined in the rig’s backend.

Some side effects of this command are that when type is set to DTR, read PTT state
comes from the Hamlib frontend, not read from the radio. When set to NONE, PTT
state cannot be read or set even if rig backend supports reading/setting PTT status from
the rig.

-D, --dcd-type=type
Use type of Data Carrier Detect device.

Supported types are ’RIG’ (CAT command), ’DSR’, ’CTS’, ’CD’, ’PARALLEL’,
’CM108’, ’GPIO’, ’GPION’, ’NONE’.

-s, --serial-speed=baud
Set serial speed to baud rate.

Uses maximum serial speed from radio backend capabilities (set by -m above) as the
default.

-c, --civaddr=id
Use id as the CI-V address to communicate with the rig.

Only useful for Icom and some Ten-Tec rigs.

Note: The id is in decimal notation, unless prefixed by 0x, in which case it is
hexadecimal.

-t, --send-cmd-term=char
Change the termination char for text protocol when using the send_cmd command.

The default value is ASCII CR (’0x0D’). ASCII non-printing characters can be given as
the ASCII number in hexadecimal format prepended with “0x”. You may pass an empty
string for no termination char. The string “-1” tells rigctl to switch to binary protocol.
See the send_cmd command for further explanation.

For example, to specify a command terminator for Kenwood style text commands pass
“-t ’;’” to rigctl. See EXAMPLE below.

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 3/14

-L, --show-conf
List all config parameters for the radio defined with -m above.

-C, --set-conf=parm=val[,parm=val]
Set radio configuration parameter(s), e.g. stop_bits=2.

Use the -L option above for a list of configuration parameters for a given model
number.

-u, --dump-caps
Dump capabilities for the radio defined with -m above and exit.

-l, --list
List all model numbers defined in Hamlib and exit.

The list is sorted by model number.

Note: In Linux the list can be scrolled back using Shift-PageUp/Shift-PageDown, or
using the scrollbars of a virtual terminal in X or the cmd window in Windows. The
output can be piped to more(1) or less(1), e.g. “rigctl -l | more”.

-o, --vfo
Enable vfo mode.

An extra VFO argument will be required in front of each appropriate command (except
set_vfo). Otherwise, ’currVFO’ is used when this option is not set and an extra VFO
argument is not used.

-n, --no-restore-ai
On exit rigctl restores the state of auto information (AI) on the controlled rig.

If this is not desired, for example if you are using rigctl to turn AI mode on or off, pass
this option.

-i, --read-history
Read previously saved command and argument history from a file (default
$HOME/.rigctl_history) for the current session.

Available when rigctl is built with Readline support (see READLINE below).

Note: To read a history file stored in another directory, set the RIGCTL_HIST_DIR
environment variable, e.g. “RIGCTL_HIST_DIR=~/tmp rigctl -i”. When
RIGCTL_HIST_DIR is not set, the value of HOME is used.

-I, --save-history
Write current session (and previous session(s), if -i option is given) command and
argument history to a file (default $HOME/.rigctl_history) at the end of the current
session.

Complete commands with arguments are saved as a single line to be recalled and used
or edited. Available when rigctl is built with Readline support (see READLINE
below).

Note: To write a history file in another directory, set the RIGCTL_HIST_DIR
environment variable, e.g. “RIGCTL_HIST_DIR=~/tmp rigctl -IRq. When
RIGCTL_HIST_DIR is not set, the value of HOME is used.

-v, --verbose
Set verbose mode, cumulative (see DIAGNOSTICS below).

-Y,--ignore-err
Ignores rig open errors

-Z, --debug-time-stamps
Enable time stamps for the debug messages.

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 4/14

Use only in combination with the -v option as it generates no output on its own.
-h, --help

Show a summary of these options and exit.
-V, --version

Show version of rigctl and exit.
- Stop option processing and read commands from standard input.

See Standard Input below.

Note: Some options may not be implemented by a given backend and will return an error. This is
most likely to occur with the --set-conf and --show-conf options.

Please note that the backend for the radio to be controlled, or the radio itself may not support some
commands. In that case, the operation will fail with a Hamlib error code.

COMMANDS

Commands can be entered either as a single char, or as a long command name. The commands are
not prefixed with a dash as the options are. They may be typed in when in interactive mode or
provided as argument(s) in command line interface mode. In interactive mode commands and their
arguments may be entered on a single line:

M LSB 2400

Since most of the Hamlib operations have a set and a get method, an upper case letter will often be
used for a set method whereas the corresponding lower case letter refers to the get method. Each
operation also has a long name; in interactive mode, prepend a backslash, ’\’, to enter a long
command name.

Example: Use “\dump_caps” to see what capabilities this radio and backend support.

Note: The backend for the radio to be controlled, or the radio itself may not support
some commands. In that case, the operation will fail with a Hamlib error message.

Standard Input
As an alternative to the READLINE interactive command entry or a single command for each run,
rigctl features a special option where a single dash (’-’) may be used to read commands from
standard input (stdin). Commands must be separated by whitespace similar to the commands given
on the command line. Comments may be added using the ’#’ character, all text up until the end of
the current line including the ’#’ character is ignored.

A simple example (typed text is in bold):

$ cat <<.EOF. >cmds.txt
> # File of commands

> v f m
query
rig
> V
VFOB F
14200000
M CW
500

set rig

> v f m

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 5/14

query
rig

> .EOF.

$ rigctl -m1 - <cmds.txt

v VFOA

f 145000000

m FM
15000

V VFOB
F 14200000
M CW 500
v VFOB

f 14200000

m CW
500

$

rigctl Commands
A summary of commands is included below (In the case of set commands the quoted italicized
string is replaced by the value in the description. In the case of get commands the quoted italicized
string is the key name of the value returned.):
Q|q, exit rigctl

Exit rigctl in interactive mode.

When rigctl is controlling the rig directly, will close the rig backend and port. When
rigctl is connected to rigctld (radio model 2), the TCP/IP connection to rigctld is closed
and rigctld remains running, available for another TCP/IP network connection.

F, set_freq 'Frequency'
Set 'Frequency', in Hz.

Frequency may be a floating point or integer value.
f, get_freq

Get 'Frequency', in Hz.

Returns an integer value and the VFO hamlib thinks is active. Note that some rigs (e.g.
all Icoms) cannot track current VFO so hamlib can get out of sync with the rig if the
user presses rig buttons like the VFO.

M, set_mode 'Mode' 'Passband'
Set 'Mode' and 'Passband'.

Mode is a token: ’USB’, ’LSB’, ’CW’, ’CWR’, ’RTTY’, ’RTTYR’, ’AM’, ’FM’,
’WFM’, ’AMS’, ’PKTLSB’, ’PKTUSB’, ’PKTFM’, ’ECSSUSB’, ’ECSSLSB’, ’FA’,
’SAM’, ’SAL’, ’SAH’, ’DSB’.

Passband is in Hz as an integer, -1 for no change, or ’0’ for the radio backend default.

Note: Passing a ’?’ (query) as the first argument instead of a Mode token will return a
space separated list of radio backend supported Modes. Use this to determine the

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 6/14

supported Modes of a given radio backend.
m, get_mode

Get 'Mode' and 'Passband'.

Returns Mode as a token and Passband in Hz as in set_mode above.
V, set_vfo 'VFO'

Set 'VFO'.

VFO is a token: ’VFOA’, ’VFOB’, ’VFOC’, ’currVFO’, ’VFO’, ’MEM’, ’Main’,
’Sub’, ’TX’, ’RX’.

In VFO mode (see --vfo option above) only a single VFO parameter is required:

$ rigctl -m 229 -r /dev/rig -o

Rig command: V
VFO: VFOB

Rig command:
v, get_vfo

Get current 'VFO'.

Returns VFO as a token as in set_vfo above.
J, set_rit 'RIT'

Set 'RIT'.

RIT is in Hz and can be + or -. A value of ’0’ resets RIT (Receiver Incremental Tuning)
to match the VFO frequency.

Note: RIT needs to be explicitly activated or deactivated with the set_func command.
This allows setting the RIT offset independently of its activation and allows RIT to
remain active while setting the offset to ’0’.

j, get_rit
Get 'RIT' in Hz.

Returned value is an integer.
Z, set_xit 'XIT'

Set 'XIT'.

XIT is in Hz and can be + or -. A value of ’0’ resets XIT (Transmitter Incremental
Tuning) to match the VFO frequency.

Note: XIT needs to be explicitly activated or deactivated with the set_func command.
This allows setting the XIT offset independently of its activation and allows XIT to
remain active while setting the offset to ’0’.

z, get_xit
Get 'XIT' in Hz.

Returned value is an integer.
T, set_ptt 'PTT'

Set 'PTT'.

PTT is a value: ’0’ (RX), ’1’ (TX), ’2’ (TX mic), or ’3’ (TX data).
t, get_ptt

Get 'PTT' status.

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 7/14

Returns PTT as a value in set_ptt above.
S, set_split_vfo 'Split' 'TX VFO'

Set 'Split' mode.

Split is either ’0’ = Normal or ’1’ = Split.

Set 'TX VFO'.

TX VFO is a token: ’VFOA’, ’VFOB’, ’VFOC’, ’currVFO’, ’VFO’, ’MEM’, ’Main’,
’Sub’, ’TX’, ’RX’.

s, get_split_vfo
Get 'Split' mode.

Split is either ’0’ = Normal or ’1’ = Split.

Get 'TX VFO'.

TX VFO is a token as in set_split_vfo above.
I, set_split_freq 'Tx Frequency'

Set 'TX Frequency', in Hz.

Frequency may be a floating point or integer value.
i, get_split_freq

Get 'TX Frequency', in Hz.

Returns an integer value.
X, set_split_mode 'TX Mode' 'TX Passband'

Set 'TX Mode' and 'TX Passband'.

TX Mode is a token: ’USB’, ’LSB’, ’CW’, ’CWR’, ’RTTY’, ’RTTYR’, ’AM’, ’FM’,
’WFM’, ’AMS’, ’PKTLSB’, ’PKTUSB’, ’PKTFM’, ’ECSSUSB’, ’ECSSLSB’, ’FA’,
’SAM’, ’SAL’, ’SAH’, ’DSB’.

TX Passband is in Hz as an integer, or ’0’ for the radio backend default.

Note: Passing a ’?’ (query) as the first argument instead of a TX Mode token will return
a space separated list of radio backend supported TX Modes. Use this to determine the
supported TX Modes of a given radio backend.

x, get_split_mode
Get 'TX Mode' and 'TX Passband'.

Returns TX Mode as a token and TX Passband in Hz as in set_split_mode above.
Y, set_ant 'Antenna' 'Option'

Set 'Antenna' and 'Option'.

Number is 1-based antenna# (’1’, ’2’, ’3’, ...).

Option depends on rig..for Icom it probably sets the Tx & Rx antennas as in the IC-
7851. See your manual for rig specific option values. Most rigs don’t care about the
option.

For the IC-7851, FTDX3000 (and perhaps others) it means this:

1 = TX/RX = ANT1 FTDX3000=ANT1/ANT3
2 = TX/RX = ANT2 FTDX3000=ANT2/ANT3
3 = TX/RX = ANT3 FTDX3000=ANT3

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 8/14

4 = TX/RX = ANT1/ANT4
5 = TX/RX = ANT2/ANT4
6 = TX/RX = ANT3/ANT4

y, get_ant 'Antenna'
Get 'Antenna'

A value of 0 for Antenna will return the current TX antenna

> 0 is 1-based antenna# (’1’, ’2’, ’3’, ...).

Option returned depends on rig..for Icom is likely the RX only flag.
b, send_morse 'Morse'

Send 'Morse' symbols.
0x8b, get_dcd

Get 'DCD' (squelch) status: ’0’ (Closed) or ’1’ (Open).
R, set_rptr_shift 'Rptr Shift'

Set 'Rptr Shift'.

Rptr Shift is one of: ’+’, ’-’, or something else for ’None’.
r, get_rptr_shift

Get 'Rptr Shift'.

Returns ’+’, ’-’, or ’None’.
O, set_rptr_offs 'Rptr Offset'

Set 'Rptr Offset', in Hz.
o, get_rptr_offs

Get 'Rptr Offset', in Hz.
C, set_ctcss_tone 'CTCSS Tone'

Set 'CTCSS Tone', in tenths of Hz.
c, get_ctcss_tone

Get 'CTCSS Tone', in tenths of Hz.
D, set_dcs_code 'DCS Code'

Set 'DCS Code'.
d, get_dcs_code

Get 'DCS Code'.
0x90, set_ctcss_sql 'CTCSS Sql'

Set 'CTCSS Sql' tone, in tenths of Hz.
0x91, get_ctcss_sql

Get 'CTCSS Sql' tone, in tenths of Hz.
0x92, set_dcs_sql 'DCS Sql'

Set 'DCS Sql' code.
0x93, get_dcs_sql

Get 'DCS Sql'
code.

N, set_ts 'Tuning Step'
Set 'Tuning Step', in Hz.

n, get_ts
Get 'Tuning Step', in Hz.

U, set_func 'Func' 'Func Status'
Set 'Func' and 'Func Status'.

Func is a token: ’FAGC’, ’NB’, ’COMP’, ’VOX’, ’TONE’, ’TSQL’, ’SBKIN’,
’FBKIN’, ’ANF’, ’NR’, ’AIP’, ’APF’, ’MON’, ’MN’, ’RF’, ’ARO’, ’LOCK’, ’MUTE’,
’VSC’, ’REV’, ’SQL’, ’ABM’, ’BC’, ’MBC’, ’RIT’, ’AFC’, ’SATMODE’, ’SCOPE’,
’RESUME’, ’TBURST’, ’TUNER’, ’XIT’.

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 9/14

Func Status is a non null value for “activate” or “de-activate” otherwise, much as
TRUE/FALSE definitions in the C language (true is non-zero and false is zero, ’0’).

Note: Passing a ’?’ (query) as the first argument instead of a Func token will return a
space separated list of radio backend supported set function tokens. Use this to
determine the supported functions of a given radio backend.

u, get_func 'Func'
Get 'Func Status'.

Returns Func Status as a non null value for the Func token given as in set_func above.

Note: Passing a ’?’ (query) as the first argument instead of a Func token will return a
space separated list of radio backend supported get function tokens. Use this to
determine the supported functions of a given radio backend.

L, set_level 'Level' 'Level Value'
Set 'Level' and 'Level Value'.

Level is a token: ’PREAMP’, ’ATT’, ’VOX’, ’AF’, ’RF’, ’SQL’, ’IF’, ’APF’, ’NR’,
’PBT_IN’, ’PBT_OUT’, ’CWPITCH’, ’RFPOWER’, ’RFPOWER_METER’,
’RFPOWER_METER_WATTS’, ’MICGAIN’, ’KEYSPD’, ’NOTCHF’, ’COMP’,
’AGC’, ’BKINDL’, ’BAL’, ’METER’, ’VOXGAIN’, ’ANTIVOX’, ’SLOPE_LOW’,
’SLOPE_HIGH’, ’RAWSTR’, ’SWR’, ’ALC’, ’STRENGTH’.

The Level Value can be a float or an integer value. For the AGC token the value is one
of ’0’ = OFF, ’1’ = SUPERFAST, ’2’ = FAST, ’3’ = SLOW, ’4’ = USER, ’5’ =
MEDIUM, ’6’ = AUTO.

Note: Passing a ’?’ (query) as the first argument instead of a Level token will return a
space separated list of radio backend supported set level tokens. Use this to determine
the supported levels of a given radio backend.

l, get_level 'Level'
Get 'Level Value'.

Returns Level Value as a float or integer for the Level token given as in set_level
above.

Note: Passing a ’?’ (query) as the first argument instead of a Level token will return a
space separated list of radio backend supported get level tokens. Use this to determine
the supported levels of a given radio backend.

P, set_parm 'Parm' 'Parm Value'
Set 'Parm' and 'Parm Value'.

Parm is a token: ’ANN’, ’APO’, ’BACKLIGHT’, ’BEEP’, ’TIME’, ’BAT’,
’KEYLIGHT’.

Note: Passing a ’?’ (query) as the first argument instead of a Parm token will return a
space separated list of radio backend supported set parameter tokens. Use this to
determine the supported parameters of a given radio backend.

p, get_parm 'Parm'
Get 'Parm Value'.

Returns Parm Value as a float or integer for the Parm token given as in set_parm
above.

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 10/14

Note: Passing a ’?’ (query) as the first argument instead of a Parm token will return a
space separated list of radio backend supported get parameter tokens. Use this to
determine the supported parameters of a given radio backend.

B, set_bank 'Bank'
Set 'Bank'.

Sets the current memory bank number.
E, set_mem 'Memory#'

Set 'Memory#' channel number.
e, get_mem

Get 'Memory#' channel number.
G, vfo_op 'Mem/VFO Op'

Perform a 'Mem/VFO Op'.

Mem/VFO Operation is a token: ’CPY’, ’XCHG’, ’FROM_VFO’, ’TO_VFO’, ’MCL’,
’UP’, ’DOWN’, ’BAND_UP’, ’BAND_DOWN’, ’LEFT’, ’RIGHT’, ’TUNE’,
’TOGGLE’.

Note: Passing a ’?’ (query) as the first argument instead of a Mem/VFO Op token will
return a space separated list of radio backend supported Set Mem/VFO Op tokens. Use
this to determine the supported Mem/VFO Ops of a given radio backend.

g, scan 'Scan Fct' 'Scan Channel'
Perform a 'Scan Fct' on a 'Scan Channel'.

Scan Function is a token: ’STOP’, ’MEM’, ’SLCT’, ’PRIO’, ’PROG’, ’DELTA’,
’VFO’, ’PLT’.

Scan Channel is an integer (maybe?).

Note: Passing a ’?’ (query) as the first argument instead of a Scan Fct token will return
a space separated list of radio backend supported Scan Function tokens. Use this to
determine the supported Scan Functions of a given radio backend.

H, set_channel 'Channel'
Set memory 'Channel' data.

Sets memory channel information
h, get_channel 'readonly'

Get channel memory.

If readonly!=0 then only channel data is returned and rig remains on the current
channel. If readonly=0 then rig will be set to the channel requested. data.

A, set_trn 'Transceive'
Set 'Transceive' mode.

Transcieve is a token: ’OFF’, ’RIG’, ’POLL’.

Transceive is a mechanism for radios to report events without a specific call for
information.

Note: Passing a ’?’ (query) as the first argument instead of a Transceive token will
return a space separated list of radio backend supported Transceive mode tokens. Use
this to determine the supported Transceive modes of a given radio backend.

a, get_trn
Get 'Transceive' mode.

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 11/14

Transceive mode (reporting event) as in set_trn above.
*, reset 'Reset'

Perform rig 'Reset'.

Reset is a value: ’0’ = None, ’1’ = Software reset, ’2’ = VFO reset, ’4’ = Memory Clear
reset, ’8’ = Master reset.

Since these values are defined as a bitmask in include/hamlib/rig.h, it should be
possible to AND these values together to do multiple resets at once, if the backend
supports it or supports a reset action via rig control at all.

0x87, set_powerstat 'Power Status'
Set 'Power Status'.

Power Status is a value: ’0’ = Power Off, ’1’ = Power On, ’2’ = Power Standby (enter
standby), ’4’ = Power Operate (leave standby).

0x88, get_powerstat
Get 'Power Status' as in set_powerstat above.

0x89, send_dtmf 'Digits'
Set DTMF 'Digits'.

0x8a, recv_dtmf
Get DTMF 'Digits'.

_, get_info
Get misc information about the rig.

0xf5, get_rig_info
Get misc information about the rig vfo status and other info.

0xf3, get_vfo_info 'VFO'
Get misc information about a specific vfo.

dump_state
Return certain state information about the radio backend.

1, dump_caps
Not a real rig remote command, it just dumps capabilities, i.e. what the backend knows
about this model, and what it can do.

TODO: Ensure this is in a consistent format so it can be read into a hash, dictionary, etc.
Bug reports requested.

Note: This command will produce many lines of output so be very careful if using a
fixed length array! For example, running this command against the Dummy backend
results in over 5kB of text output.

VFO parameter not used in ’VFO mode’.
2, power2mW 'Power [0.0..1.0]' 'Frequency' 'Mode'

Returns 'Power mW'.

Converts a Power value in a range of 0.0...1.0 to the real transmit power in milli-Watts
(integer).

'Frequency' and 'Mode' also need to be provided as output power may vary according to
these values.

VFO parameter is not used in VFO mode.
4, mW2power 'Power mW' 'Frequency' 'Mode'

Returns 'Power [0.0..1.0]'.

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 12/14

Converts the real transmit power in milli-Watts (integer) to a Power value in a range of
0.0 ... 1.0.

'Frequency' and 'Mode' also need to be provided as output power may vary according to
these values.

VFO parameter is not used in VFO mode.
w, send_cmd 'Cmd'

Send a raw command string to the radio.

This is useful for testing and troubleshooting radio commands and responses when
developing a backend.

For binary protocols enter values as \0xAA\0xBB. Expect a 'Reply' from the radio
which will likely be a binary block or an ASCII string depending on the radio’s
protocol (see your radio’s computer control documentation).

The command terminator, set by the send-cmd-term option above, will terminate each
command string sent to the radio. This character should not be a part of the input string.

W, send_cmd_rx 'Cmd' nbytes
Send a raw command string to the radio and expect nbytes returned.

This is useful for testing and troubleshooting radio commands and responses when
developing a backend. If the # of bytes requested is <= the number actually returned no
timeout will occur.

The command argument can have no spaces in it. For binary protocols enter values as
\0xAA\0xBB. Expect a 'Reply' from the radio which will likely be a binary block or an
ASCII string depending on the radio’s protocol (see your radio’s computer control
documentation).

The command terminator, set by the send-cmd-term option above, will terminate each
command string sent to the radio. This character should not be a part of the input string.

chk_vfo
Get 'Status'

Returns Status as 1 if vfo option is on and 0 if vfo option is off. This command reflects
the -o switch for rigctl and ritctld and can be dynamically changed by set_vfo_opt.

set_vfo_opt 'Status'
Set 'Status'

Set vfo option Status 1=on or 0=off This is the same as using the -o switch for rigctl
and ritctld. This can be dyamically changed while running.

pause 'Seconds'
Pause for the given whole (integer) number of 'Seconds' before sending the next
command to the radio.

READLINE

If Readline library development files are found at configure time, rigctl will be conditonally built
with Readline support for command and argument entry. Readline command key bindings are at
their defaults as described in the Readline manual. rigctl sets the name “rigctl” which can be used in
Conditional Init Constructs in the Readline Init File ($HOME/.inputrc by default) for custom
keybindings unique to rigctl.

https://tiswww.cwru.edu/php/chet/readline/rluserman.html

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 13/14

Command history is available with Readline support as described in the Readline History manual.
Command and argument strings are stored as single lines even when arguments are prompted for
input individually. Commands and arguments are not validated and are stored as typed with values
separated by a single space.

Normally session history is not saved, however, use of either of the -i/--read-history or -I/--save-
history options when starting rigctl will cause any previously saved history to be read in and/or the
current and any previous session history (assuming the -i and -I options are given together) will be
written out when rigctl is closed. Each option is mutually exclusive, i.e. either may be given
separately or in combination. This is useful to save a set of commands and then read them later but
not write the modified history for a consistent set of test commands in interactive mode, for
example.

History is stored in $HOME/.rigctl_history by default although the destination directory may be
changed by setting the RIGCTL_HIST_DIR environment variable. When RIGCTL_HIST_DIR is
unset, the value of the HOME environment variable is used instead. Only the destination directory
may be changed at this time.

If Readline support is not found at configure time the original internal command handler is used.
Readline is not used for rigctl commands entered on the command line regardless if Readline
support is built in or not.

Note: Readline support is not included in the MS Windows 32 or 64 bit binary builds supplied by
the Hamlib Project. Running rigctl on the MS Windows platform in the ’cmd’ shell does give
session command line history, however, it is not saved to disk between sessions.

DIAGNOSTICS

The -v, --verbose option allows different levels of diagnostics to be output to stderr and correspond
to -v for BUG, -vv for ERR, -vvv for WARN, -vvvv for VERBOSE, or -vvvvv for TRACE.

A given verbose level is useful for providing needed debugging information to the email address
below. For example, TRACE output shows all of the values sent to and received from the radio
which is very useful for radio backend library development and may be requested by the developers.

EXIT STATUS

rigctl exits with:
0 if all operations completed normally;
1 if there was an invalid command line option or argument;
2 if an error was returned by Hamlib.

EXAMPLES
Start rigctl for a Yaesu FT-920 using a USB to serial adapter on Linux in interactive mode:

$ rigctl -m 1014 -r /dev/ttyUSB1

Start rigctl for a Yaesu FT-920 using COM1 on MS Windows while generating TRACE output to
stderr:

> rigctl -m 1014 -r COM1 -vvvvv

https://tiswww.case.edu/php/chet/readline/history.html#SEC1

5/24/22, 10:26 AM RIGCTL

hamlib.sourceforge.net/html/rigctl.1.html 14/14

Start rigctl for a Yaesu FT-920 using a USB to serial adapter while setting baud rate and stop bits:

$ rigctl -m 1014 -r /dev/ttyUSB1 -s 4800 -C stop_bits=2

Start rigctl for an Elecraft K3 using a USB to serial adapter while specifying a command terminator
for the w command:

$ rigctl -m 2029 -r /dev/ttyUSB0 -t’;’

Connect to a running rigctld with radio model 2 (“NET rigctl”) on the local host and specifying the
TCP port, setting frequency and mode:

$ rigctl -m 2 -r localhost:4532 F 7253500 M LSB 0

BUGS

set_chan has no entry method as of yet, hence left unimplemented.

This almost empty section...

Report bugs to:
Hamlib Developer mailing list

COPYING

This file is part of Hamlib, a project to develop a library that simplifies radio, rotator, and amplifier
control functions for developers of software primarily of interest to radio amateurs and those
interested in radio communications.

Copyright © 2000-2011 Stephane Fillod
Copyright © 2000-2018 the Hamlib Group (various contributors)
Copyright © 2010-2020 Nate Bargmann

This is free software; see the file COPYING for copying conditions. There is NO warranty; not even
for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

SEE ALSO
less(1), more(1), rigctld(1), hamlib(7)

COLOPHON

Links to the Hamlib Wiki, Git repository, release archives, and daily snapshot archives are available
via hamlib.org.

mailto:hamlib-developer@lists.sourceforge.net
http://www.hamlib.org/

